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1. Quantum Binary Devices

Quantum binary devices are important in two respects:

(a) In quantum computers each number represented by n
binary digits is stored in a set of n two–state devices
(or qubits). Since the state of each qubit is a quantum–
mechanical superposition of two states (representing
digits 0 and 1), the entire set stores simultaneously 2n

numbers (parallel computing).

(b) In classical computers use of nanodevices interact-
ing among themselves in a classical way (so that the
state space dimensions increase as n instead of as
2n) provides consistent reduction in size and dissipa-
tion.

In these lectures we examine the dynamics and the cir-
cuit modelling of potential nanodevices (or cells) – spin 1

2
particles immersed in a magnetic field supporting both the
bias and the signal.

Before entering the quantum treatment, we sketch the dy-
namics of such particles in a purely classical way.
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2. Classical Definition of the Cell

The cell is assumed to be a particle endowed with an an-
gular momentum J and a magnetic moment

M = γJ (1)

where γ is the gyromagnetic ratio, whose expression is not
of interest by now. We only assume, to comply with further
developments, that γ < 0, i.e. that angular momentum and
magnetic moment are antiparallel.

We assume a Cartesian reference frame with unit vectors
ex, ey, ez.

The cell is immersed in a magnetic field

B = B0ez + B1(t) (2)

where B0 is a constant bias and

B1(t) = B1 cosωt ex + B1 sinωt ey (3)

is the magnetic harmonic component at angular frequency
ω of a circularly polarized TEM wave signal impinging on
the cell.

We assume that the electric field has negligible effect on
the system.
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3. Classical Dynamics of the Cell

The energy of the system cell+magnetic field is

W = −M · B = −MB cos θ (4)

where θ is the angle from B to M.

a. Motion in the static field B0

The torque acting on the cell is

Γ = −dW
dθ

= −MB0 sin θ (5)

or vectorially

Γ = M × B0 (6)

The rate of increase of angular momentum

dJ(t)
dt

= Γ(t) (7)

thus becomes from eqs. (1) and (6)

dM(t)
dt

= γM(t) × B0 (8)
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From eq. (8)

dM2

dt = 2M · dM
dt = 2γM × B0 ·M = 0

d
dt (M · B0) =

dM
dt · B0 = γM × B0 · B0 = 0

(9)

Moreover, by projecting eq. (8) on the (x, y)–plane, we find
the equations



dMx
dt = γB0My

dMy
dt = −γB0Mx

(10)

Eqs. (9) show that the magnetic moment M has constant
modulus and forms a constant angle with the magnetic
field B0 = B0ez; eqs. (10) that it rotates around ez with
angular speed

ω0 = −γB0 (11)

(L’s precession).

A well known mechanical analogue is the spinning top.
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b. Influence of a rotating field B1(t)

Eq. (8) is replaced by

dM(t)
dt

= γM(t) × [B0 + B1(t)] (12)

Define

ω0 = −γB0, ω1 = −γB1 (13)

Thus, taking into account eqs. (13), eq. (12) becomes

dM(t)
dt

= M(t) × [−ω0ez − ω1eX(t)] (14)

where eX is the unit vector parallel to B1(t).

We now introduce a rotating reference frame (eX, eY , ez)
with eY perpendicular to eX and ez. With respect to the
latter the precession angular speed is −∆ω = ω0−ω. Thus
eq. (14) becomes

(
dM(t)

dt

)

rel
= M(t) × [∆ωez − ω1eX] (15)

While eq. (14) is time–dependent because the vector eX
rotates, eq. (15) is time-independent because the same
vector is now fixed. Thus the solution is greatly simplified.
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Now precession takes place around a relative resultant
field

Beff =
1
γ

(∆ωez − ω1eX) (16)

If ∆ω = 0 we have magnetic resonance. The magnetic
moment spins around eX, that is a vector lying in the (x, y)-
plane, and therefore it has positive and negative compon-
ents along the z-axis for equal times.

If ∆ω � ω1, Beff as almost the same direction as B0ez and
thus the precession occurs around the z-axis.

The motion, as seen from the fixed reference frame, is the
resultant of the rotation of the magnetic moment M around
the effective magnetic field Beff, with angular speed

Ω =

√
∆ω2 + ω2

1 (17)

and of the rotation of vector Beff around ez with angular
speed ω. While the last motion gives rise to precession,
the former develops into nutation.
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4. Quantum Definition of the Cell

The cell is assumed to be a particle endowed with a two–
state angular momentum Ĵ and a magnetic moment

M̂ = γĴ (18)

where

γ = g
qe
2m

(19)

is the gyromagnetic ratio, qe < 0 the electric charge of the
electron, m the mass the particle, g the L́ factor. M̂
and Ĵ are operators in H space H.

The L́ factor has the value 1 for pure electron orbital
moment, 2 for pure electron spin moment, 2·2.79 for proton
spin, 2(−1.93) for neutron spin, other values of the order of
1 for nuclei and atoms.

In the following we usually will make reference to the case
of the electron spin (γ = qe/m) for which

M̂ = γŜ =
qe~

2m
σ̂ (20)
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The cell is immersed in a magnetic field

B = B0ez + B1(t) (21)

where B0 is a constant bias and

B1(t) = B1 cosωt ex + B1 sinωt ey (22)

is the magnetic harmonic component at angular frequency
ω of a circularly polarized TEM wave signal impinging on
the cell.

Again we assume that the electric field has negligible effect
on the system.

The energy operator of the system cell+magnetic field (the
Hamiltonian operator) is by analogy with the classical case

Ĥ = −M̂ · B =
|qe|~
2m

σ̂ · B (23)

Note that the magnetic field is treated as an ordinary vector
function, not as a vector operator: the description of the
interaction is semiclassical.
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The vector spin operator σ̂ is expanded along the axes
x, y, z:

σ̂ = σ̂xex + σ̂yey + σ̂zez (24)

Thus eq. (23) becomes

Ĥ =
|qe|~
2m

σ̂ · B =
|qe|~
2m

(σ̂xBx + σ̂yBy + σ̂zBz) (25)

We choose the up and down spin states along the z-axis
as the basis: they are denoted as |+z〉 and |−z〉.

In such a basis the operators σ̂x, σ̂y and σ̂z have the rep-
resentations

σ̂x = |−z〉 〈+z| + |+z〉 〈−z|

σ̂y = i |−z〉 〈+z| − i |+z〉 〈−z|

σ̂z = − |−z〉 〈−z| + |+z〉 〈+z|

(26)

Note: operators of the type |m〉 〈n| form the basis for the
space of matrices representing the operators: matrix rep-
resenting the operator above has just a 1 at the crossing
of row m and column n and 0 everywhere else.
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The matrix representation associated to the previous basis
in H space H is

(σx) =


0 1

1 0

 , (σy) =


0 i

−i 0

 , (σz) =


−1 0

0 1


(27)

where ordering of rows and columns is |−z〉 , |+z〉.

Using eqs. (27), we obtain the z-representation of the Ha-
miltonian Ĥ defined in eq. (25)

(H)z =
|qe|~
2m


−Bz Bx + iBy

Bx − iBy Bz

 (28)

or, taking into account eqs. (21), (22) and leaving out in-
dex z

(H) =
|qe|~
2m


−B0 B1eiωt

B1e−iωt B0

 (29)

Now define

ω0 =
|qe|B0

m
, ω1 =

|qe|B1
m

(30)
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Thus the final form of the Hamiltonian matrix is

(H) =
~

2


−ω0 ω1eiωt

ω1e−iωt ω0

 (31)

The Hamiltonian operator completely characterises the cell
as a closed system.

Such a description is not sufficient for our purposes for two
reasons:

(a) It is not completely realistic since the cell is in con-
tact with environment not only through the electro-
magnetic excitation, but also through thermal exchan-
ges.

(b) We need that the computer, at the end of processing,
reach a steady state, instead of evolving quasi-periodically
for ever.

Thus we assume that

The cell interacts with a thermal bath of infinite capacity at
some fixed temperature T , that in our applications can be
chosen ≈ 0.
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5. Quantum Dynamics of the Closed Cell

We temporarily assume that the interaction between the
cell and the bath is interrupted.

1. Pure states

A pure state is a system whose evolution between prepar-
ation and measurement is completely defined by a state
vector |ψ〉 ∈ H.

Its dynamical evolution is ruled by S̈ equation

i~
d
dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (32)

with the initial condition

|ψ(0)〉 =
∣∣∣ψ0

〉
(33)∣∣∣ψ0

〉
being any ket of H.

Eq. (33), when Ĥ does not depend on t, is solved as fol-
lows

|ψ(t)〉 = e−iĤt/~ ∣∣∣ψ0
〉

=
∑

n
e−iEnt/~ |En〉 〈En|ψ0〉 (34)

with En and |En〉 the eigenvalues and eigenvectors of Ĥ.
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2. Mixtures

A mixture is a system composed of several pure states
|ψν〉, each of which enters the mixture with some probabil-
ity ρν (with

∑
ν ρν = 1).

The state of a mixture is described by the Hermitian dens-
ity operator

ρ̂(t) =
∑

ν

ρν |ψν(t)〉 〈ψν(t)| (35)

Using eq. (32) for each of the pure states, we obtain that
the dynamical evolution of the mixture is ruled by the L-
–V N equation

dρ̂(t)
dt

= − i
~

[Ĥ(t)ρ̂(t) − ρ̂(t)Ĥ(t)] (36)

For a two–state system eq. (36) reads


dρ11
dt

= +iω1
2 (e−iωtρ12 − eiωtρ∗12)

dρ22
dt

= −iω1
2 (e−iωtρ12 − eiωtρ∗12)

dρ12
dt

= iω1
2 eiωt(ρ11 − ρ22) + iω0ρ12

(37)

where index 1 refers to state |−z〉, index 2 to state |+z〉.
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6. Quantum Dynamics of the Open Cell

The dynamical evolution of the two–state system in contact
with the bath defined at the end of slide 13 is ruled by
eqs. (37) supplemented by phenomenological terms taking
into account thermal exchanges.

We assume that a particle in the state of higher energy
(excited state) has a probability per unit time W12 of de-
caying to the state of lower energy (ground state) emitting
a quantum of energy ~ω0 which is absorbed by the bath;
and that conversely a particle in the ground state has a
probability per unit time W21 of rising to the excited state
absorbing a quantum of energy ~ω0 which is released by
the bath.

We further assume that the two probabilities are related by
B’ Law

W21
W12

= e−~ω0/kT (38)
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We assume that incoherent dynamics, due to the inter-
action of the system with the bath, be simply additive to
the coherent dynamics described by equations (37), which
thus become



dρ11

dt
= +iω1

2 (e−iωtρ12 − eiωtρ∗12) + W12ρ22 −W21ρ11

dρ22

dt
= −iω1

2 (e−iωtρ12 − eiωtρ∗12) −W12ρ22 + W21ρ11

dρ12

dt
= iω1

2 eiωt(ρ11 − ρ22) + iω′0ρ12 −
[

1
2(W12 + W21) + Wadi

12

]
ρ12

(39)

The incoherent term in the last equation states that the
logarithmic decrement of coherence depends additively on
the nonadiabatic transition probabilities between the states
W12 and W21 (each counted for one half), due to the mech-
anism of emission and absorption of energy quanta, and
from an adiabatic decoherence probability within the states
Wadi

12 = Wadi
21 due to collisions between particles. The latter

give rise also to a shift in frequency ω′0 = ω0 − ∆ω0.

Note: the last statement is an interpretation, not an as-
sumption, which could hardly be justified. All incoherent
terms in eqs. (39) can be derived in a theoretical way.
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Note:

Open systems cannot be treated by S̈ equation,
since a pure state immediately degenerates into a mixture,
when in contact with the bath.

The density operator of a pure state has the form

ρ̂ = |ψ〉 〈ψ| (40)

For a two–state system the state vector has the form |ψ〉 =

ψ1 |1〉 + ψ2 |2〉 and the density operator has the represent-
ation

(ρ) =


ψ1ψ

∗
1 ψ1ψ

∗
2

ψ2ψ
∗
1 ψ2ψ

∗
2

 (41)

The density matrix of a pure system has rank one.

In a decoherence process in absence of external actions
ρ12 decreases and converges to zero while ρ11 and ρ22
remain both nonzero, since they must satisfy the conser-
vation of probability and B’s Law. So the rank of
the density matrix becomes 2.
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7. Passage to the Rotating Reference Frame

If a system is rotated of angle φ around an axis, say ez, its
state vector |ψ〉 transforms to

∣∣∣ψ′〉 according to the rule

∣∣∣ψ′
〉

= exp
(
− i
~
φĴz

)
|ψ〉 (42)

This is the same as to leave the system fixed and to rotate
the axes (x, y) of an angle −φ.

Thus the passage from fixed to rotating axes is equivalent
to a system rotation

∣∣∣ψ′
〉

= exp
(

i
~
ωtĴz

)
|ψ〉 = exp

(
i
ωt
2
σ̂z

)
|ψ〉 (43)

or, taking into account eq. (27),


ψ′1 = e−iωt/2ψ1

ψ′2 = eiωt/2ψ2

(44)

The density matrix is a sum of rank one matrices of the
type in eq. (41). For each of them, and hence for their sum,
we can calculate the transformation from fixed to rotating
axes using eqs. (44).
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Thus

ρ′11 = e−iωt/2ρ11eiωt/2 = ρ11

ρ′22 = eiωt/2ρ22e−iωt/2 = ρ22

ρ′12 = e−iωt/2ρ11e−iωt/2 = e−iωtρ12

(45)

By replacing in eqs. (39) variables ρi j with variables ρ′i j
according to eqs. (45), we obtain



dρ′11

dt
= +iω1

2 (ρ′12 − ρ
′∗
12) + W12ρ

′
22 −W21ρ

′
11

dρ′22

dt
= −iω1

2 (ρ′12 − ρ
′∗
12) −W12ρ

′
22 + W21ρ

′
11

dρ′12

dt
= iω1

2 (ρ′11 − ρ′22) − i∆ω0ρ
′
12 −

[
1
2(W12 + W21) + Wadi

12

]
ρ′12

(46)

Eqs. (46) are time–independent like eqs. (15) for the clas-
sical case.

Eqs. (46) can be rewritten compactly as

dρ̂
dt

= iLρ̂ +Dρ̂ (47)

where L andD are respectively the Hermitian Liouville
and dissipation superoperators. This opens the way to the
analysis in B space.
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8. Quantum Dynamics in B Space

Representation of the density operator in the canonic basis
(rotating reference frame)

ρ̂ =
1
2

1̂2 +
1
2
λ′1σ̂x +

1
2
λ′2σ̂y +

1
2
λ′3σ̂z (48)

Representation of the density operator in the |±z〉 basis
(rotating reference frame) (eq. (27))

(ρ) =
1
2


1 − λ′3 λ′1 + iλ′2

λ′1 − iλ′2 1 + λ′3

 (49)

Using the B variables (λ′1, λ
′
2, λ
′
3), eqs. (46) assume

the form

d
dt



λ′1

λ′2

λ′3


=



− 1
T2

∆ω′ 0

−∆ω′ − 1
T2

−ω1

0 ω1 − 1
T1





λ′1

λ′2

λ′3


+



0

0

W12 −W21


(50)

where
1

T1
= W12 + W21,

1
T2

= 1
2(W12 + W21) + Wadi

12

∆ω′ = ∆ω + ∆ω0

(51)
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Note that the relaxation times are connected by the equa-
tion

2
T2

=
1

T1
+

1
τ∗ (52)

where

τ∗ =
1

Wadi
12

(53)

Eq. (50) can be rewritten compactly as a vector equation
in the three–dimensional B space

d~λ
dt

= Ω~λ + Dλ + ~f (54)

with evident meaning of the symbols.

From eq. (54)

dλ2

dt
= ~λ · D~λ + ~f · ~λ (55)

since Ω is skew–symmetric. For a closed system

|~λ| = const (56)

or the “state vector” ~λ moves on B’s sphere.
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The average value of the magnetic moment is

〈m〉 = Tr(ρσ̂) = −|qe|~
2m

(λ′1eX + λ′2eY + λ′3ez) (57)

Thus eqs. (50) are equivalent to the following

d
dt



〈m′X〉

〈m′Y〉

〈m′z〉


=



− 1
T2

∆ω′ 0

−∆ω′ − 1
T2

−ω1

0 ω1 − 1
T1





〈m′X〉

〈m′Y〉

〈m′z〉



+
|e|~
2m



0

0

W12 −W21



(58)

which describe the time evolution of the classical magnetic
moment.
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The dynamical system described by eqs. (58), started from
any initial condition 〈m0〉, after a transient whose duration
depends on the relaxation times, will reach an equilibrium,
that in the fixed reference frame corresponds to steady
precession around ez.

The equilibrium is found by equating the time derivatives in
eqs. (58) to zero and solving the obtained algebraic equa-
tions. We find

λ̃′1 =
(W12 −W21)ω1(∆ω′)
1

T 2
2T1

+ 1
T1

(∆ω′)2 + 1
T2
ω2

1

λ̃′2 =

(W12 −W21)
1

T2
ω1

1
T 2

2T1
+ 1

T1
(∆ω′)2 + 1

T2
ω2

1

λ̃′3 = −
(W12 −W21)


1

T 2
2

+ (∆ω′)2


1

T 2
2T1

+ 1
T1

(∆ω′)2 + 1
T2
ω2

1

(59)

where tilde means asymptotic value.

24



From eqs. (49) and (59) we obtain

ρ̃22 =
1
2

(1 + λ′3) =
1
2



1 −
(W12 −W21)


1

T 2
2

+ (∆ω′)2


1

T 2
2T1

+
1

T1
(∆ω′)2 +

1
T2
ω2

1



.

(60)

From eqs. (38) and (51) we get

W12 −W21 =
1

T1
tanh

~ω0
2kT

(61)

Finally ρ̃22 can be written as

ρ̃22 =
1
2



1 −


1

T 2
2

+ (∆ω′)2


1

T 2
2

+ (∆ω′)2 +
T1
T2
ω2

1

tanh
~ω0
2kT



(62)

At any temperature, however large be the field B1, ρ̃22 can-
not be larger than 1

2.
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At T = 0 K eq. (62) simplifies to

ρ̃22 =
1
2

T1
T2
ω2

1

1

T 2
2

+ (∆ω′)2 +
T1
T2
ω2

1

(63)

Assume that in eq. (52) τ∗ tend to +∞ as T1. Then

lim
T1→+∞

T1
T2

= 1 (64)

Then eq. (63) becomes

ρ̃22 =
1
2

ω2
1

(∆ω)2 + ω2
1

(65)

In the case of a closed system, ρ22(t) is a periodic function

of angular frequency Ω =

√
∆ω2 + ω2

1. The above quantity
ρ̃22 is its time average value!

Although the derivation is mathematically questionable, it
gives the right answer, as it will be proved rigorously in the
following.
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For the sake of completeness, we present the stationary
components of the magnetic moment from eqs. (57) and
(59)

〈m̃′X〉 = − (W12 −W21)ω1(∆ω′)
1

T 2
2T1

+ 1
T1

(∆ω′)2 + 1
T2
ω2

1

〈m̃′Y〉 = −
(W12 −W21)

1
T2
ω1

1
T 2

2T1
+ 1

T1
(∆ω′)2 + 1

T2
ω2

1

〈m̃′z〉 =

(W12 −W21)


1

T 2
2

+ (∆ω′)2


1

T 2
2T1

+ 1
T1

(∆ω′)2 + 1
T2
ω2

1

(66)
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9. R’s Problem

Assume a closed two–state system with ρ22(0) = 1. Then
find the time evolution of ρ22.

We must solve eqs. (50) with 1/T1 = 1/T2 = W12 = W21 =

0, ∆ω′ = ∆ω.

d
dt



λ′1

λ′2

λ′3


=



0 ∆ω 0

−∆ω 0 −ω1

0 ω1 0





λ′1

λ′2

λ′3


(67)

The eigenvalues are

λ′1,2 = ±Ω = ±
√
∆ω2 + ω2

1, λ3 = 0 (68)

Then

λ′3 = A sinΩt + B cosΩt + C (69)

where A, B, and C are constants to be determined by the
initial conditions.
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From the third of eqs. (67)

λ′2 =
1
ω1

dλ′3
dt

=
Ω

ω1
(A cosΩt − B sinΩt) (70)

From the second of eqs. (67)

λ′1 = − 1
∆ω

dλ′2
dt
− ω1
∆ω

dλ′3
dt

(71)

Condition ρ22(0) = 0 gives (eq. (49)) λ′3(0) = −1. Thus
eq. (69) yields

A = 0, B + C = −1 (72)

Hence

λ′1 =
1
∆ω

Ω2

ω1
B cosΩt − ω1

∆ω
(B cosΩt + C)

λ′2 = − Ω
ω1

B sinΩt

λ′3 = B cosΩt + C

(73)

Since the density matrix (ρ) is nonnegative definite,

ρ22(0) = 0⇒ ρ12(0) = 0

and therefore λ′1(0) = λ′2(0) = 0.
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From the first of eqs. (73), the second of eqs. (72) we ob-
tain

Ω2

ω1∆ω
B +

ω1
∆ω

= 0 (74)

and finally

A = 0, B = −
ω2

1
Ω2 , C = −1 +

ω2
1

Ω2 (75)

Thus from eqs. (49), (73) and (75) we find

ρ11(t) = 1 −
ω2

1

∆ω2 + ω2
1

sin2 Ωt
2

ρ22(t) =
ω2

1

∆ω2 + ω2
1

sin2 Ωt
2

ρ12(t) =
1
2
ω1
Ω

[
∆ω

Ω
(1 − cosΩt) + sinΩt

]

(76)

The second of eqs. (76) solves R’s problem. It is imme-
diately seen that the time average of ρ22(t) over the period
is just given by eq. (65).
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10. Power Dissipation

The energy that a particle exchanges with the bath in one
transition is ~ω0. If N is the total number of particles,
W12Nρ22 of them decay per unit time while W21Nρ11 rise
up. Hence the total power released to the bath is

pd(t) = N~ω0[W12ρ22(t) −W21ρ11t] (77)

or, at zero bath temperature

pd(t) = N~ω0W12ρ22(t) (78)

Such powers become asymptotically constant since ρ11(t)
and ρ22(t) converge to ρ̃11 and ρ̃22 when t → +∞.

Hence the dissipated power has the steady state form

Pd = N~ω0W12ρ̃22 (79)

ρ̃22 is calculated from λ̃3 (eq. (59)) by using eq. (49)

ρ̃22 =
1
2

ω2
1

1
T1T2

+
T2
T1

(∆ω′)2 + ω2
1

(80)
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Now

ω2
1 = γB2

1 =
q2

e
m2 B2

1 (81)

The incident power of the rotating TEM wave can be ex-
pressed in terms of B1 as

Pi =
1
2
ε0c3B2

1σ (82)

(ε0 permittivity of vacuum, c speed of electromagnetic waves
in vacuum, σ the area illuminated by the field)

Hence

ω2
1 =

q2
e

m2 B2
1 =

2q2
e

m2ε0c3σ
Pi (83)

Finally

Pd =
N~ω0W12q2

e
m2ε0c3σ

Pi

1
T1T2

+
T2
T1

(∆ω′)2 +
2q2

e
m2ε0c3σ

Pi

(84)

Eq. (84) expresses the dissipated power in terms of the
incident one.
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11. Linearisation

Eq. (84) can be linearised when

2T1T2q2
e

m2ε0c3σ
Pi � 1 (85)

and reduces to

Pd =
N~ω0W12q2

e
m2ε0c3σ

1

1 + T 2
2 (∆ω′)2

Pi (86)

The cell illuminated by the TEM circularly polarized wave
can be considered as a linear time–invariant one–port.

Electromagnetic power entering it is partly dissipated (re-
leased to the bath) and partly supplies the increase rate of
stored electromagnetic energy.

In steady state only the first part is the active power con-
stant in time, the second part is the reactive power, whose
time average on a period is zero.
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12. The Equivalent Circuit Synthesis

We represent the linear time–invariant one–port in D-
’s form, i.e. as a lossless two–port terminated on a res-
istor.

The two–port is characterized by its scattering matrix

S =


s11 s12

s21 s22

 (87)

In absence of nonreciprocal media, s12 = s21 (condition of
reciprocity).

Due to losslessness, matrix S is unitary on the imaginary
axis.

The scattering matrix yields the reflected waves bi in terms
of the incident ones ai at both ports.

Wave amplitudes are so normalized that |ai|2 represents
the incident power, |bi|2 the reflected power at port i.
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Since there is no incident power at port 2, the equation

|b2|2 = |s21|2|a1|2 (88)

relates the reflected power at port 2 (i.e. the power re-
leased to the resistor) to the incident power at port 1. Thus
comparing with eq. (86), we obtain

|s21|2 =
K

1 + T 2
2 (ω − ω′0)2

(89)

with

K =
Nω0T2q2

e
m2ε0c3σ

(90)

Analytic continuation of eq. (89) in the complex plane p =

σ + iω gives

s21∗(p)s21(p) =
K

1 − T 2
2 (p − iω′0)2

(91)

where the paraconjugate s21∗(p) of s21(p) is defined as

s21∗(p) = s∗21(−p∗) (92)

(note that the paraconjugate reduces to the conjugate on
the imaginary axis iω.)
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Eq. (91) admits of the Hurwitzian factorization

s21(p) =

√
K

1 + T2(p − iω′0)
, s21∗(p) =

√
K

1 − T2(p − iω′0)
(93)

Analytic continuation of the unitary conditions leads to the
paraunitary conditions. In particular

s11∗(p)s11(p) = 1 − s21∗(p)s21(p) (94)

and therefore

s11∗(p)s11(p) =
1 − K − T 2

2 (p − iω′0)2

1 − T 2
2 (p − iω′0)2

(95)

Again we perform H factorisation

s11(p) =
√

1 − K
1 +

T2√
1 − K

(p − iω′0)

1 + T2(p − iω′0)

s11∗(p) =
√

1 − K
1 − T2√

1 − K
(p − iω′0)

1 − T2(p − iω′0)

(96)
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Let Z0 be the (real) characteristic impedance of the trans-
mission line carrying the incident wave.

Then the impedance of the one–port is

Z(p) = Z0
1 + s11(p)
1 − s11(p)

(97)

or, taking into account the first of eqs. (96),

Z(p) = Z0
2T2

1 − √1 − K
p − iZ0

ω′0T2

1 − √1 − K
+ Z0

1 +
√

1 − K

1 − √1 − K
(98)

Thus the equivalent circuit is the series connection of an
inductor, of an imaginary resistor and of a real resistor.
The first two elements are lossless and form the D

two–port.
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APPENDIX

A Refresher of Quantum Mechanics

A1. The Mathematics of Quantum Mechanics

The state space of Quantum Mechanics is a H space
H, whose elements, kets, are denoted as |ψ〉, where ψ is a
label to distinguish a particular ket.

The dual space of H, H′, can be identified with H. Hence
each of its elements, the bras, can be labelled as the ket
which it can be identified with and represented as 〈ψ|.

The scalar product 〈φ|ψ〉 is a mapping of the Cartesian
product H′×H into the complex plane C with the properties

1. 〈φ|(c1 |ψ1〉 + c2 |ψ2〉) = c1〈φ|ψ1〉 + c2〈φ|ψ2〉
c1, c2 ∈ C

2. 〈φ|ψ〉 = 〈ψ|φ〉∗

3. 〈ψ|ψ〉 ≥ 0 (= 0 iff ψ = 0)

(A1)

Thus the scalar product is linear in the second factor and
antilinear in the first.
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A linear operator Â from H to H is defined by the property

Â(c1 |ψ1〉 + c2 |ψ2〉) = c1Â |ψ1〉 + c2Â |ψ2〉 (A2)

Let |χ〉 be the mapping of |ψ〉 through Â. Then the mapping
between the corresponding bras is defined by the adjoint
of Â denoted as Â+:

〈χ| = 〈ψ|Â+ (A3)

Thus

〈φ|Â|ψ〉 = 〈ψ|Â+|φ〉∗ (A4)

An operator such that

A = A+ (A5)

is said to be Hermitian.

An Hermitian operator Â has the following properties:

1. Its eigenvalues ai are real.

2. Its eigenvectors |a〉 are orthonormal (〈ai|a j〉 = δi j).
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Any set of orthonormal kets |ξi〉 such that any |ψ〉 can be
uniquely represented as

|ψ〉 =
∑

i
ci |ξi〉 (A6)

is a basis for the Hilbert space H. Since

ci = 〈ξi|ψ〉 (A7)

eq. (A6) can be rewritten as

|ψ〉 =
∑

i
|ξi〉 〈ξi|ψ〉 (A8)

Accordingly the operator Â can be represented as

Â =
∑

i, j
ai j |i〉 〈 j| (A9)

with

ai j = 〈i|Â| j〉 (A10)

If the operator is Hermitian

ai j = a∗ji (A11)

The non-Hermitian operator

|i〉 〈 j| := P̂i j (A12)

is the projection operator of state j on state i.
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A2. The Interpretative Postulates

Postulate 1 The state of a physical system is represented
by a normalized ket |ψ〉 (or equivalently by the correspond-
ing bra 〈ψ|.)

Postulate 2 An observable (a dynamical variable that can
be measured) is represented by an Hermitian operator Â
whose eigenvectors form a basis for H.

Postulate 3 The result of a measurement of an observ-
able Â can only be an eigenvalue ai of Â. After the meas-
urement the state vector |ψ〉 collapses into the eigenvector
corresponding to that eigenvalue, i.e. |ai〉.

Postulate 4 When the state |ψ〉 is expanded in eigenvectors
of the operator Â according to eqs. (A6) or (A8), the coeffi-
cients ci = 〈ai|ψ〉 represent the probability amplitudes that
the system in state |ψ〉 be found after the measurement
of Â in state |ai〉. The squared modulus of the probability
amplitude is the probability of the same event: P(ai| |ψ〉) =

|〈ai|ψ〉|2.
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Postulate 5 The time evolution of the state vector |ψ〉 is
determined by the S̈ equation

i~
d
dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (A13)

with the initial condition

|ψ(0)〉 =
∣∣∣ψ0

〉
,

∣∣∣ψ0
〉 ∈ H (A14)

where Ĥ(t) is the energy or Hamiltonian operator.

Postulate 6 The commutator of two Hermitian operators
Â and B̂ having classical analogues is given by

[Â, B̂] = ÂB̂ − B̂Â = i~{A, B}1̂ (A15)

where

{A, B} =
∑

n

(
∂A
∂qn

∂B
∂pn
− ∂A
∂pn

∂B
∂qn

)
(A16)

is the P bracket of the classical quantities A and B;
qn and pn are the classical coordinates and momenta.

A5



A3. Main Theorems

From Postulates 1 to 4 follows the

Theorem 1 The expected value of a dynamical variable Â
for a system in state |ψ〉 is given by

〈A〉 = 〈ψ|Â|ψ〉 (A17)

From Postulate 5 follows the

Theorem 2 The solution of eq. (A13) with the initial con-
dition (A14) has the form

|ψ(t)〉 = Û(t)
∣∣∣ψ0

〉
(A18)

where Û(t) is a unitary operator satisfying

Û+Û = 1̂ (A19)

The evolution operator Û(t) defines on (−∞ < t < +∞) a
one–parameter group i.e.

Û(t1 + t2) = Û(t1)Û(t2) (A20)

If Ĥ does not depend on time (conservative system), we
have

Û(t) = e−iĤt/~ (A21)
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A4. Pure States and Mixtures

A pure state is characterised by a single state vector |ψ〉. A
mixture is characterised by several state vectors |ψi〉, each
of which is present in the mixture with (classical) probabil-
ity ρi.

Definition 1 The density operator of a mixture is defined
as

ρ̂ =
∑

i
ρi |ψi〉 〈ψi| (A22)

In particular for a pure state it reduces to

ρ̂ = |ψ〉 〈ψ| (A23)

The density operator is Hermitian and nonnegative defin-
ite. Its rank is equal to the number of linearly independent
|ψi〉; in particular it is 1 for pure states.

In a given base the diagonal elements ρii are called pop-
ulations, since they give the densities of systems in the
various states, the nondiagonal ones ρi j are called coher-
ences, since they take into account the phase differences
between the various states.

A7



Theorem 3 The expected value of a dynamical variable Â
for a mixture characterised by a density operator ρ̂ is

〈Â〉 = Tr{ρ̂Â} =
∑

i
ρi〈ψi|Â|ψi〉 (A24)

Theorem 4 The time evolution of the density operator ρ̂ is
determined by the L–V N equation

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂] (A25)

with the initial condition

ρ̂(0) = ρ̂0, ρ̂0 ∈ H × H (A26)

Theorem 5 The solution of eq. (A25) with the initial con-
dition (A26) has the form

ρ̂(t) = Û(t)ρ̂0U+(t) (A27)

If Ĥ does not depend on time (conservative system), we
have

ρ̂(t) = e−iĤt/~ρ̂0eiĤt/~ (A28)
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A5. Dissipative Quantum Systems

Dissipation is introduced by assuming that the system S is
in contact with a thermal bath of infinite capacity at tem-
perature T .

The treatment is limited to two–state systems.

We introduce the P spin operators in the z-representa-
tion

σ̂x �


0 1

1 0

 σ̂y �


0 i

−i 0

 σ̂z �


−1 0

0 1

 (A29)

and the projection operators

σ̂+ = 1
2(σ̂x + iσ̂y) �


0 0

1 0



σ̂− = 1
2(σ̂x − iσ̂y) �


0 1

0 0



(A30)

that can also be represented as

σ+ = P̂21 = |2〉 〈1| σ− = P̂12 = |1〉 〈2| (A31)
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The effect of the interaction on the equations of the system
can be represented according to the following

Theorem 6 The master equation corresponding to irre-
versible dynamics which preserves the semigroup prop-
erty for the non–unitary evolution operator Φ̂(t), i.e.

Φ̂(t1 + t2) = Φ̂(t1)Φ̂(t2) (t1, t2) ≥ 0 (A32)

must have the L form

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂]

+Wadi[[σ̂z, ρ̂], σ̂z] + i
∆ω0

2
[σ̂z, ρ̂]

+1
2W12

(
[σ̂−, ρ̂σ̂+] + [σ̂−ρ̂, σ̂+]

)

+1
2W21

(
[σ̂+, ρ̂σ̂−] + [σ̂+ρ̂, σ̂−]

)

(A33)

where Wadi can be interpreted as the adiabatic transition
probability within the states (decoherence due to elastic
collisions), ∆ω0 as the connected frequency shift, W12 and
W21 as the nonadiabatic transition probabilities from state
2 to state 1 and viceversa (with release or absorption of a
quantum of energy to or from the bath).
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Eq. (A33) can be rewritten in a less compact but more con-
venient form as

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂]

+Wadi[[σ̂z, ρ̂], σ̂z] + i
∆ω0

2
[σ̂z, ρ̂]

+1
2W12

(
σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂ − ρ̂σ̂+σ̂−)

+1
2W21

(
σ̂+ρ̂σ̂− − σ̂−σ̂+ρ̂ − ρ̂σ̂−σ̂+)

(A34)

Finally, taking into account the definition of projection op-
erators in eq. (A12) and eq. (A31), eq. (A34) can be written
as

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂]

+Wadi
12 (ρ12 |1〉 〈2| + ρ21 |2〉 〈1|)

+(W12ρ22 −W21ρ11) |1〉 〈1|

+(W21ρ11 −W12ρ22) |2〉 〈2|

−1
2

(W12 + W21)(ρ12 |1〉 〈2| + ρ21 |2〉 〈1|)

(A35)

Eq. (A35), written in scalar form, coincides with eqs. (39).
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A6. The B Space

The set of linear Hermitian operators from H to H is itself
a vector space L(H,H) on the real field, since

1. The sum of two Hermitian operators is an Hermitian
operator.

2. The product of a real constant times an Hermitian oper-
ator is an Hermitian operator.

3. The above sum and product obey the usual rules of
algebra.

The space of Hermitian operators can be given the struc-
ture of an H space by defining the internal product
as

(Â, B̂) = Tr{ÂB̂} (A36)

i.e. the internal product of two operators is the trace of their
ordinary product.
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In the B space the natural basis is obtained from that
of eq. (A9), |i〉 〈 j|, by a nonsingular linear transformation
yielding Hermitian elements.

For a two–dimensional H space, such a basis is provide
by the unit operator and the three components of the spin
operator

Â =
1
2
A01̂ +A1σ̂x +A2σ̂y +A3σ̂z (A37)

where

A0 = a11 + a22 = Tr{Â1̂}

A1 = a12 + a21 = Tr{Âσ̂x}

A2 = −i(a12 − a21) = Tr{Âσ̂y}

A3 = −a11 + a22 = Tr{Âσ̂z}

(A38)

Thus Â can be represented in matrix form as

Â =



A0 −A3
2

A1 + iA2
2

A1 − iA2
2

A0 +A3
2


(A39)
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