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The impact of manufacturing and assembly tolerances is a very critical aspect in the analysis of 

electromagnetic devices performance [1]. When available, the worst solution (WS) xW in the 

tolerance domain  around a design solution x0 is an effective index of possible performance 

degradation due to tolerances [2]-[4]. Such information is very useful also at each step of an 

optimization process, if the robustness should be included in the iterative optimization procedure. In 

this case the promptness of WS evaluation is very critical.  

This paper proposes to take advantage of the possible knowledge of the gradient of both the 

performance and tolerance constraint functions. Here, an effective technique is proposed to provide 

a reliable estimation of the gradient when the derivatives of the objective function are not available. 

Let’s assume that x0 is a solution of an optimization problem  

 (1) 

where DR is the research domain in R
N
. The worst impact of the tolerances on the device 

performance can be looked for by facing with a maximization problem on the function fobj(x) near 

the design point x0: 

 (2) 

where the condition  can possibly be expressed by 

 (2’) 

Of course, assuming  fully included in DR( ), it follows that 

. If both fobj(x) and c(x) are smooth enough, the “worst case” 

condition is characterized by the alignment of the gradients' direction of both fobj and c (see fig. 1 

for an example): 

 (3) 

The mathematical formulation (1)-(3) can be applied in two different cases: 

a) in order to evaluate the robustness of a design solution, from a minimization process of the 

objective function; 

b) within an optimization process, in order to look for a solution characterized by a suitable 

robustness. 



Within the limits of a suitable smoothness, fobj can be approximated by a second order Taylor 

expansion inside : 

 
(4) 

In this case, the required property of convexity in  is automatically satisfied by (4). In addition, 

the gradient of  can be simply derived as follows: 

 (5) 

 
Fig. 1. Example of tolerance gradients alignment 

 

As a matter of fact, since H is the Hessian matrix of fobj, in the limits of Schwarz theorem validity, it 

is characterized by just N(N+1)/2 independent elements which can be evaluated by using a best-

fitting technique. As an important byproduct, in the robust optimization applications, the direct 

knowledge of the quadratic approximation of  guarantees a very effective use of the Newton 

minimization algorithms, as it provides in a direct way the next step of the iteration process. 

In addition, in order to obtain a linear expression for (3), also the function , which in (2’) 

describes the tolerance domain, should fall in the class of quadratic function. The problem can be 

effectively faced with by replacing the brick with a suitable N-dimensional hyper-ellipse, centered 

in xW: 

 
(6) 

able to fit in a suitable way the tolerance ranges. The WS is the solution of (3) with the constraint: 

   (7) 

If an “elliptically shaped” boundary is assumed, then (7) is a quadratic equation that must be 

satisfied together with (3), making the (3)-(7) system non-linear. However, a very effective way to 

preserve the benefits of linearity is to look for solutions of eqs. system (3) only, but as a function of 

the k parameter. In this way an infinite set of solutions is found. In practice xW can be obtained by 

solving the linear system (3) by assuming a generic value for the parameter k, e.g. k=1. Finally, two 

worst candidates are provided and the ranking of those solutions simply provides the actual WS.  
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