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This work concerns a system based on EMG sensors, signal conditioning circuitry, classification 

algorithm based on Artificial Neural Network, and virtual avatar representation, useful to identify 
hand movements within a set of five. This is to potentially make any trans-radial upper-limb 
amputee able to  drive a virtual or real limb prosthetic hand. We focused on differences resulting 
with the adoption of a different number of sensors and therefore, by means of a very simple 
heuristic method, we compared different subsets of features, excluding the less significant sensors. 
We found optimal subsets of one, two, three, four and five sensors, demonstrating a decrease of the 
performance of only 0.8% when using five sensors, while with three sensors the accuracy can be as 
high as 81.7%. As shown in Fig. 1. In such a frame, an automatic system, able to analyze the hand 
gestures and classify their effectiveness, can be strategically adopted. In recent years, different 
systems was proposed to use surface EMG (sEMG) signal acquired on human forearms as input 
data to control a real prosthesis [1] or virtual device [2], either for interactive or 
clinical/rehabilitative [3] purposes. Most of the EMG-controlled device users are radial upper-limb 
amputees, i.e. amputation occurred below elbow. For these people, the replacement of missing arm 
functionalities could be a significant improvement to the quality of life. Moreover research showed 
that the visual-sensorial feedback provided by following the prosthetic or virtual hand movements 
can be useful to alleviate the phantom limb pain [4], an invalidating condition that affects between 
50% and 80% of amputees [5].  

In our system, after acquisition, raw EMG data were segmented using the overlapped windowing 
technique [6]: the windows length was fixed to 256ms, with 64ms of overlap between two 
successive. For every sensor we considered the following features: 

• Mean (M): represents the mean value of the EMG amplitude. 
• Root Mean Square (RMS): represents the mean power of the signal.  
• Willison Amplitude (WA): represents the number of counts for each change in the EMG signal 

amplitude that exceeds a predefined threshold, set to avoid background noise-induced counts. 
It is related to the level of muscle contraction. 

• Slope Sign Change (SSC): represents the number of times the slope of the EMG signal 
changes sign. 

• Simple Square Integral (SSI): represents, similarly to Energy in continuous-time signal, the 
area under the curve of the squared signal. 

• Variance (V): represents a statistical measure of how signal varies from its average value  
during the observation: 

• Waveform Length (WL): represents cumulative length of the EMG signal waveform. WL is a 
measure of EMG signal complexity. 



For the classification, we implemented an Artificial Neural Network (ANN) with 10 neurons in 
the hidden layer and back-propagation training method. The number of neurons of the hidden layer 
was empirically determined in previous tests. 

When using all sensors, a 5-fold cross-validation to measure the performance of every 
configuration gives a mean accuracy among all subjects of 88.8%, anyway there was a strong 
difference among subjects, being the standard deviation 7.2%. In order to determine what sensors 
are more important, we first repeated the whole test, with the cross-validation, excluding sensor 1, 
i.e. considering only the features based on sensors 2, 3, 4, 5, 6. Then we excluded sensor 2, and 
cross-validated the network using the features based on sensors 1, 3, 4, 5, 6. The same was repeated 
excluding, one at a time, all the sensors. We found that excluding sensor 1, the performance was 
almost the same as using all sensors. A similar concept was applied excluding sensor 1 together 
with every other, where we found if we want to use only 4 sensor, the best performance is reached 
by using sensors 2, 3, 5, 6, which means excluding sensor 1 and 4.  

The same algorithm was applied until a single sensor remained. Results are shown in Fig. 1. As 
we can clearly see, a single sensor is not sufficient to have a good performance, but three or for 
sensor cold often be enough, depending on the available budget and required performance.  
 

Fig. 1: Box-plot of the accuracy for every considered number of sensors. 
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