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Floating-point numbers 
 
MATLAB uses conventional decimal notation, with an optional decimal point and leading plus or minus sign, for 
numbers. Scientific notation uses the letter e to specify a power-of-ten scale factor. Imaginary numbers use either 
i or j as a suffix. Some examples of legal numbers are 

3              -99            0.0001 
9.6397238      1.60210e-20    6.02252e23 
1i             -3.14159j      3e5i 

All numbers are stored internally using the long format specified by the IEEE floating-point standard. Floating-point 
numbers have a finite precision of roughly 16 significant decimal digits and a finite range of roughly 10-308 to 10+308. 
 
IEEE floating-point standard double-precision 64 bit 
  1     11                                52 
 +-+-----------+----------------------------------------------------+ 
 |S|  Exp      |  Fraction                                          | 
 +-+-----------+----------------------------------------------------+ 
 63 62       52 51                                                 0 
    bias +1023 
 
For normalised numbers, the most common, S is the sign, Exp is the biased exponent and Fraction is the fractional part of the 
significand. The number has value v = s × 2e × m where 
s = +1 (positive numbers) when S is 0 
s = −1 (negative numbers) when S is 1 
e = Exp − 1023 (in other words the exponent is stored with 1023 added to it, also called "biased with 1023") 
m = 1.Fraction in binary (that is, the significand is the binary number 1 followed by the radix point followed by the binary bits of 
Fraction). Therefore, 1 <= m < 2. 
 
eps 
Floating-point relative accuracy, i.e., the distance from 1.0 to the next largest floating-point number.  
In MATLAB  eps = 2^(-52), which is roughly 2.22e-16. 
 
realmax 
Largest floating-point number your computer can represent. 
In MATLAB realmax is one bit less than 21024 or about 1.7977e+308 
 
realmin 
 
Smallest floating-point number your computer can represent. 
On machines with IEEE floating-point format, realmin is 2^(-1022) or about 2.2251e-308. 
 
NOTICE: 
 
1) CRAMER’S RULE 
Cramer’s rule it is of theoretical importance in that it gives an explicit expression for the solution of the system Ax = c where the  
n-by-n square matrix A is invertible and the vector x is the column vector of the variables (xi): 

 
where Ai is the matrix formed by replacing the ith column of A by the column vector c.  
However, Cramer’s rule is generally inefficient and thus not used in practical applications which may involve many equations. The 
computation of a determinant starting from its definition requires a number of floating point operation proportional to n! . Since: 

 
and the most powerful computer nowadays are rated around hundred of MFLOPS, the simple calculation of a determinant would take 
billion years for a 30-by-30 matrix. Of course there are faster ways to compute determinants and inverse matrices. 
 
2) ASSOCIATIVITY PROPERTY 
Associativity, i.e. (a+b)+c=a+(b+c), does not generally hold on a computer. For instance, if a=10, b=-10 and c=2*eps, we have  
(a+b)+c=2*eps, whereas a+(b+c)=0. 
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3) SCALING 
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Vector Space  
A set V is a vector space over a field F (for example, the field of real or of complex numbers) if, given 

• an operation vector addition defined in V, denoted v + w (where v, w ∈ V), and  
• an operation scalar multiplication in V, denoted a * v (where v ∈ V and a ∈ F),  

the following ten properties hold for all a, b ∈ F and u, v, and w ∈ V:  

1. v + w belongs to V. 
(Closure of V under vector addition.)  

2. u + (v + w) = (u + v) + w. 
(Associativity of vector addition in V.)  

3. There exists a neutral element 0 in V, such that for all elements v in V, v + 0 = v. 
(Existence of an additive identity element in V.)  

4. For all v in V, there exists an element w in V, such that v + w = 0. 
(Existence of additive inverses in V.)  

5. v + w = w + v. 
(Commutativity of vector addition in V.)  

6. a * v belongs to V. 
(Closure of V under scalar multiplication.)  

7. a * (b * v) = (ab) * v. 
(Associativity of scalar multiplication in V.)  

8. If 1 denotes the multiplicative identity of the field F, then 1 * v = v. 
(Neutrality of one.)  

9. a * (v + w) = a * v + a * w. 
(Distributivity with respect to vector addition.)  

10. (a + b) * v = a * v + b * v. 
(Distributivity with respect to field addition.)  

Properties 1 through 5 indicate that V is an abelian group under vector addition. The rest, properties 6 through 10, apply to scalar 
multiplication of a vector v ∈ V by a scalar a ∈ F. Note that property 5 actually follows from the other 9. 

Basis (linear algebra) 
A subset B of a vector space V is said to be a basis of V if it satisfies one of the four equivalent conditions: 

1. B is both a set of linearly independent vectors and a generating set of V.  
2. B is a minimal generating set of V, i.e. it is a generating set but no proper subset of B is.  
3. B is a maximal set of linearly independent vectors, i.e. it is a linearly independent set but no proper superset is.  
4. every vector in V can be expressed as a linear combination of vectors in B in a unique way.  

Recall that a set B is a generating set of V if every vector in V is a linear combination of vectors in B. This definition includes a 
finiteness condition: a linear combination is always a finite sum of the form a1v1 + ... + anvn. 

All bases of a vector space have the same cardinality (number of elements), called the dimension of the vector space.  

In these definitions the fact that all linear combinations are finite is crucial. A set B is a basis of a vector space V if every member of 
V is a linear combination of just finitely many members of B. However, in Hilbert spaces and other Banach spaces, one often 
considers linear combinations of infinitely many vectors. In an infinite-dimensional Hilbert space, a set of vectors orthogonal to each 
other can never span the whole space via finite linear combinations, but what is called an orthonormal basis is a set of mutually 
orthogonal unit vectors that "span" the space via sometimes-infinite linear combinations. More generally, in topological vector 
spaces, one may define infinite sums (or series) and express elements of the space as infinite linear combinations of other elements.  
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Normed vector space 

Definition 

If V is a vector space over a field K (which must be either the real or complex numbers or another field of characteristic zero), a norm 
on V is a function from V to R, the real numbers — that is, it associates to each vector v in V a real number, which is usually denoted 
||v||. The norm must satisfy the following conditions: 

For all a in K and all u and v in V,  
1. ||v|| ≥ 0 with equality if and only if v = 0.  
2. ||av|| = |a| ||v||.  
3. ||u + v|| ≤ ||u|| + ||v||.  

Most of property 1 follows from the other axioms, and in fact it can be replaced by the following condition: 

1'. if ||v|| = 0, then v = 0  

A useful consequence of the norm axioms is the inequality 

||u ± v|| ≥ | ||u|| - ||v|| |  

for all vectors u and v. 
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 Another common norm in Rn is: 

Axxx T
A

=  

 where A is a symmetric positive definite matrix. 
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Examples of functional spaces 
 

 
 

Matrix norm 
 

 

 
  An induced norm is consistent with the vector norm ϕ(x) in the sense that ϕ(Ax) ≤ ||A|| ϕ(x). 
 
  A submultiplicative norm ||A|| is consistent with the vector norm ϕ(x) = ||[x 0 ... 0]||. 
 

 
 
  The spectral radius has also the following property (Householder’s theorem): ρ(A) = inf ||A|| where ||A|| is the set of  
  submultiplicative norms of A.  
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Rank 
 
In linear algebra, the column rank (row rank respectively) of a matrix A with entries in some field is defined to be the maximal 
number of columns (rows respectively) of A which are linearly independent. 
 
Given an m×n matrix) and rank r, then there exists at least one non-zero r×r minor, while all larger minors are zero (a minor of a 
matrix is the determinant of a submatrix of its). 
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   The inverse of a sparse matrix is generally full. The LU factorization of a sparse matrix A provides two triangular matrices L and U 
   having the same bandwidth as A. 
 
   In MATLAB: 
 
    S = SPARSE(i,j,s,m,n,nzmax)  
    uses the rows of [i,j,s] to generate an m-by-n sparse matrix with space allocated for nzmax nonzeros.  The 
    two integer index vectors, i and j, and the real or complex entries vector, s, all have the same length, nnz, which is the number of 
    nonzeros in the resulting sparse matrix S .  Any elements of s which have duplicate values of i and j are added together. 
  
    To dissect and then reassemble a sparse matrix: 
               [i,j,s] = find(S); 
               [m,n] = size(S); 
               S = sparse(i,j,s,m,n); 
 
    S = SPARSE(X) converts a sparse or full matrix to sparse form by squeezing out any zero elements. 
 
    A = FULL(X) converts a sparse matrix S to full storage organization.  If X is a full matrix, it is left unchanged. 
 
    All of MATLAB's built-in arithmetic, logical and indexing operations can be applied to sparse matrices, or to mixtures of sparse  
    and full matrices.  
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Matrix Inversion 
 

 
 
The cofactor Cij of A is defined as (-1)i+j times the minor Mij of A. 
 
Let A be a square n by n matrix over a field K (for example the field R of real numbers). The following statements are equivalent and 
must all be true for A to be invertible: 
 

• det A ≠ 0  
• rank A = n  
• The equation Ax = 0 has only the trivial solution x = 0 (i.e. Nul A = {0}).  
• The equation Ax = b has at most one solution for each b in Kn  
• The equation Ax = b has at least one solution for each b in Kn  
• The equation Ax = b has exactly one solution for each b in Kn  
• The columns of A are linearly independent.  
• The columns of A span Kn (i.e. Col A = Kn)  
• The columns of A form a basis of Kn  
• The linear transformation x |-> Ax from Kn to Kn is one-to-one  
• The linear transformation x |-> Ax from Kn to Kn is onto  
• The linear transformation x |-> Ax from Kn to Kn is bijective  
• There is an n by n matrix B such that BA = In  
• There is an n by n matrix B such that AB = In  
• The transpose AT is an invertible matrix.  
• The number 0 is not an eigenvalue of A 

The inverse of an invertible matrix A is itself invertible, with 

(A−1)−1 = A.  

The product of two invertible matrices A and B of the same size is invertible, with the inverse given by 

(AB)−1 = B−1A−1  
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Eigenvalues 
 
In linear algebra, a scalar λ is called an eigenvalue (in some older texts, a characteristic value) of a linear mapping A if there exists 
a nonzero vector x such that Ax=λx. The vector x is called an eigenvector. 
 
In MATLAB [V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the corresponding 
eigenvectors so that X*V = V*D. 
 
The characteristic polynomial of A, denoted by pA(t), is the polynomial defined by pA(t) = det(tI - A) where I denotes the n-by-n 
identity matrix. Due to Rouché-Capelli theorem, an eigenvalue of A is a root of pA. 
 
The algebraic multiplicity (or simply multiplicity) of an eigenvalue λ of A is the number of factors t-λ of the characteristic 
polynomial of A. The geometric multiplicity of λ is the number of factors t-λ of the minimal polynomial of A or equivalently the 
nullity of (λI-A). the nullity of a matrix M is the number of columns of M minus the rank of M.  
 
Notice that A and AT have same the eigenvalues but in general different eigenvectors. 
 
In case both multiplications that A and AT have same the eigenvalues but in general different eigenvectors. 
 
Given matrices A and B and their product defined, then generally AB ≠ BA. However, AB and BA have the same nonzero eigenvalues. 
The eigenvectors of BA are obtained multiplying by B those of AB. 
 
Cayley-Hamilton theorem states that every square matrix over the real or complex field, satisfies its own characteristic equation. This 
means the following: if A is the given square matrix and pA(t) = det(A - tI) is its characteristic polynomial (a polynomial in the 
variable t), then replacing t by the matrix A results in the zero matrix: pA(A) = 0. An important corollary of the Cayley-Hamilton 
theorem is that the minimal polynomial of a given matrix is a divisor of its characteristic polynomial. This is very useful in finding 
the Jordan form of a matrix. 
 
If p(t) is any polynomial in the variable t and λ is an eigenvalue of matrix A, then p(λ) is an eigenvalue of matrix p(A). In particular, 
λn is an eigenvalue of A n, and (σ+µλ) is an eigenvalue of  (σI+µA). 
 
Real symmetric matrices have real eigenvalues, as λ=(x*Ax)/(x*x) is the ratio of two real numbers. On the other hand, skew-
symmetric matrices have imaginary eigenvalues. 
 

Gerschgorin’s Theorem 

Let A be a square complex matrix. Around every element ija on the diagonal of the matrix, we draw a circle with radius the sum of 

the norms of the other elements on the same row ∑ ≠ij ija . Such circles are called Gershgorin discs. Every eigenvalue of A lies in 

one of these Gershgorin discs. 

Proof: Let λ be an eigenvalue of A and x its corresponding eigenvector. Choose i such that jji xx max= . Since x can't be 0, 

ix >0. Now Ax =λx, or looking at the i-th component ( ) ∑ ≠
=−

ij jijiii xaxaλ , taking the norm on both sides gives: 

∑∑ ≠≠
≤=−

ij ijij
i

jij
ii a

x
xa

aλ  

As the eigenvalues of A and AT are the same, a similar result holds for the columns of A. 
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Gaussian Elimination 
Gaussian (or Gauss-Jordan) elimination is an algorithm in linear algebra for determining the solutions of a system of linear equations, 
for determining the rank of a matrix, and for calculating the inverse of an invertible square matrix. 
 
The first step for the solution of the n-by-n system Ax=b  is aimed at eliminating x1 from all but the first equation. This is obtained by 
pre-multiplying both left and right hand side by the sparse lower matrix L1: 
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The second step eliminates x2 from all but the first two equations using a suitable lower matrix L2, having all diagonal 
entries equal to 1, and non-zero off-diagonal terms only in the second column. After the n-th step, there is an upper triangular matrix 
U on the left hand side and therefore the system is easily solved via a recursive relation, which is equivalent to n steps requiring pre-
multiplications by suitable sparse upper matrices. Notice that A=LU, where L=L1

-1L2
-1...Ln

-1.  
The computational complexity of Gaussian elimination is O(n3), that is, the number of operations required is proportional 

to n3 if the matrix size is n-by-n. This is because the matrices L1, L2, etc. used in the process are sparse. 
Sometimes it is necessary to switch two equations: for instance if y hadn't occurred in the second equation after our first 

step above, we would have switched the second and third equation and then eliminated y from the first equation. It is possible that the 
algorithm gets "stuck": for instance if y hadn't occurred in the second and the third equation after our first step above. In this case, the 
system doesn't have a unique solution. In MATLAB [L,U] = LU(X) stores an upper triangular matrix in U and a "psychologically 
lower triangular matrix" (i.e. a product of lower triangular and permutation matrices) in L, so that X = L*U. X can be rectangular. 

 

Orthogonal Matrix 
An orthogonal matrix is a square matrix G whose transpose is its inverse, i.e., 

GGT = GTG = In. 
This definition can be given for matrices with entries from any field, but the most common case is the one of matrices with real 
entries, and only that case will be considered here. A real square matrix is orthogonal if and only if its columns form an orthonormal 
basis of Rn with the ordinary Euclidean dot product, which is the case if and only if its rows form an orthonormal basis of Rn. 
 
Geometrically, orthogonal matrices describe linear transformations of Rn which preserve angles and lengths, such as rotations and 
reflections. They are compatible with the Euclidean inner product in the following sense: if G is orthogonal and x and y are vectors in 
Rn, then 

 
The inverse of every orthogonal matrix is again orthogonal, as is the matrix product of two orthogonal matrices. 
 
The determinant of any orthogonal matrix is 1 or −1: 

1 = det(I) = det(GGT) = det(G)det(GT) = (det(G))2. 
 

In three dimensions, the orthogonal matrices with determinant 1 correspond to proper rotations and those with determinant −1 to 
improper rotations. 
 
All eigenvalues of an orthogonal matrix, even the complex ones, have absolute value 1. Eigenvectors for different eigenvalues are 
orthogonal. 
 

Unitary matrix 
A unitary matrix is a n by n complex matrix U satisfying the condition 

U*U = UU* = In  
where In is the identity matrix and U* is the conjugate transpose (also called the Hermitian adjoint) of U. Note this condition says that 
a matrix U is unitary if it has an inverse which is equal to its conjugate transpose U*. 
 
A unitary matrix in which all entries are real is the same thing as an  orthogonal matrix .  
 

Permutation Matrix 
In linear algebra, a permutation matrix is a binary matrix that has exactly one entry 1 in each row and each column and 0s elsewhere. 
Permutation matrices are the matrix representation of permutations. 
 
Any permutation matrix is orthogonal. 
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Similarity 
Two n-by-n matrices A and B over the field K are called similar if there exists an invertible n-by-n matrix P over K such that 
 P−1AP = B. 
Similar matrices share many properties: they have the same rank, the same determinant, the same trace, the same eigenvalues (but not 
necessarily the same eigenvectors), the same characteristic polynomial and the same minimal polynomial. There are two reasons for 
these facts: 

• two similar matrices can be thought of as describing the same linear map, but with respect to different bases  
• the map X |-> P-1XP is an automorphism of the associative algebra of all n-by-n matrices  

Because of this, for a given matrix A, one is interested in finding a simple "normal form" B which is similar to A -- the study of A 
then reduces to the study of the simpler matrix B. For example, A is called diagonalizable if it is similar to a diagonal matrix. Not all 
matrices are diagonalizable, but at least over the complex numbers (or any algebraically closed field), every matrix is similar to a 
matrix in Jordan form. Another normal form, the rational canonical form, works over any field. By looking at the Jordan forms or 
rational canonical forms of A and B, one can immediately decide whether A and B are similar. 

Similarity of matrices does not depend on the base field: if L is a field containing K as a subfield, and A and B are two matrices over 
K, then A and B are similar as matrices over K if and only if they are similar as matrices over L. This is quite useful: one may safely 
enlarge the field K, for instance to get an algebraically closed field; Jordan forms can then be computed over the large field and can 
be used to determine whether the given matrices are similar over the small field. This approach can be used, for example, to show 
that every matrix is similar to its transpose. 

If in the definition of similarity, the matrix P can be chosen to be a permutation matrix then A and B are permutation-similar; if P can 
be chosen to be a unitary matrix then A and B are unitarily equivalent. The spectral theorem says that every normal matrix is unitarily 
equivalent to some diagonal matrix. 

Properties: 

• P−1(A+B)P= P−1AP+ P−1BP 
• P−1(AB)P= (P−1AP) (P−1BP) 
• P−1(σA)P=σ(P−1AP) 
• P−1(An)P=(P−1AP)n 
• P−1AP and P−1AP  have the same rank, the same determinant, the same trace, the same eigenvalues (but not necessarily the 

same eigenvectors), the same characteristic polynomial and the same minimal polynomial 

Normal Matrix 
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Diagonalizable matrix 
A square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e. if there exists an invertible matrix P such that P -

1AP is a diagonal matrix. If V is a finite-dimensional vector space, then a linear map T : V → V is called diagonalizable if there exists 
a basis of V with respect to which T is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding 
diagonal matrix for a diagonalizable matrix or linear map.  

Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle: their eigenvalues and 
eigenvectors are known and one can raise a diagonal matrix to a power by simply raising the diagonal entries to that same power. 

An n-by-n matrix A over the field F is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to n, which 
is the case if and only if there exists a basis of Fn consisting of eigenvectors of A. If such a basis has been found, one can form the 
matrix P having these basis vectors as columns, and P -1AP will be a diagonal matrix. The diagonal entries of this matrix are the 
eigenvalues of A.  

Another characterization: A matrix or linear map is diagonalizable over the field F if and only if its minimal polynomial is a product 
of distinct linear factors over F. 

The following sufficient (but not necessary) conditions are often useful: 

• an n-by-n matrix A is diagonalizable if its characteristic polynomial has n distinct roots 
• any normal matrix A (such that AA*=A*A) is diagonalizable 

Positive-definite Matrix 
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Rayleigh quotient 

For a given real symmetric matrix A and real nonzero vector x, the Rayleigh quotient R(A,x) is defined as: 

 

Note that R(A,c·x) = R(A,x) for any real scalar c. 

It can be shown that this quotient reaches its minimum value λmin (the smallest eigenvalue of A) when x is vmin (the corresponding 
eigenvector). Similarly, R(A,x) ≤ λmax and R(A,vmax) = λmax: 
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The Rayleigh quotient is used in eigenvalue algorithms to obtain an eigenvalue approximation from an eigenvector approximation. 
Specifically, this is the basis for Rayleigh quotient iteration. 
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Singular value decomposition 

 

 
In MATLAB the svd command computes the matrix singular value decomposition. 
 
s = svd(X) returns a vector of singular values. 
 
[U,S,V] = svd(X) produces a diagonal matrix S of the same dimension as X, with nonnegative diagonal 
elements in decreasing order, and unitary matrices U and V so that X = U*S*V'. 
 
[U,S,V] = svd(X,0) produces the "economy size" decomposition. If X is m-by-n with m > n, then svd 
computes only the first n columns of U and S is n-by-n. 
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Scalar product 
 
In the following article, the field of scalars denoted F is either the field of real numbers R or the field of complex numbers C. 
Formally, an inner product space is a vector space V over the field F together with a bilinear form, called an inner product 

 
satisfying the following axioms: 

• Nonnegativity:  

 
• Nondegeneracy:  

 
• Conjugate symmetry:  

 
(Conjugation is also often written with an asterisk, as in <y,x>*, as is the conjugate transpose.)  

• Sesquilinearity:  

 

 
By combining these with conjugate symmetry, we get:  

 

 
Note that if F=R, then the conjugate symmetry property is simply symmetry of the inner product, i.e. 

 
In this case, sesquilinearity becoms standard linearity. 
Remark. Many mathematical authors require an inner product to be linear in the first argument and conjugate-linear in the second 
argument, contrary to the convention adopted above. This change is immaterial, but the definition above ensures a smoother 
connection to the bra-ket notation used by physicists in quantum mechanics and is now often used by mathematicians as well. Some 
authors adopt the convention that < , > is linear in the first component while < | > is linear in the second component, although this is 
by no means universal. For instance the G. Emch reference does not follow this convention. 
In some cases we need to consider non-negative semi-definite sesquilinear forms. This means that <x, x> is only required to be non-
negative. We show how to treat these below. 
[edit] 

Examples 
A trivial example are the real numbers with the standard multiplication as the inner product 

 
More generally any Euclidean space Rn with the dot product is an inner product space 

 
Even more generally any positive-definite matrix M can be used to define an inner product on Cn as 

 
with x* the conjugate transpose of x. 
The article on Hilbert space has several examples of inner product spaces where the metric induced by the inner product yields a 
complete metric spaces. An example of an inner product which induces an incomplete metric is is the space C[a, b] of continuous 
complex valued functions on the interval [a,b]. The inner product is 

 
This space is not complete; consider for example, for the interval [0,1] the sequence of functions { fk }k where 

• fk(t) is 1 for t in the subinterval [0, 1/2]  
• fk(t) is 0 for t in the subinterval [1/2 + 1/k, 1]  
• fk is affine in [1/2, 1/2 + 1/k]  

This sequence is a Cauchy sequence which does not converge to a continuous function. 
 


