Temperature-Constrained Power
Management Scheme for 3D MPSoC

Arnica Aggarwal, Sumeet S. Kumar, Amir Zjajo, Rene van Leuken

Delft University of Technology
The Netherlands.

14th May 2012

3
TUDelft e 1/24




INTRODUCTION

- Better system integration and performance by scaling down device size

 Further scaling is becoming challenging due to limitations of:

- interconnect performance - leakage power - process variation

- 3D integration offers increased system integration and performance

* Increased power density
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MOTIVATION

« Temperature constraints for power management is important
- DVFS is a widely used power management technique

2D MPSoC 3D MPSoC

» Monitor PE workload only

- PE temp. monitored independently

PE: Processing Element
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MOTIVATION

« Temperature constraints for power management is important
- DVFS is a widely used power management technique

2D MPSoC 3D MPSoC

» Monitor PE workload only Non-uniform

heat propagation !

- PE temp. monitored independently

Need for new approaches to deal with the differences

PE: Processing Element
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OUTLINE

System modeling

Power management algorithm
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Results
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SYSTEM MODELING (1)

New DVFS level for each PE

chip Power supply
Multi-processor circuit Power
Management

TS Block

PE Power
monitor

Power consumption of the chip

Temperature and activity of each PE

TS: Temperature Sensor
PE: Processing Element
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SYSTEM MODELING (II)

 Each PE has fixed V/F levels: VF1, VF2, VF3, VF4, VF5, VF6

 Relation between Power and DVFS level can be given by:
P=A.(V?F)+B

=> AP = A . A(V?F)
_VFL P VRR R4 VF3 VFe

|
APO AP1 AP2 AP3 AP4 AP5
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: PE 1 @ P,
Heatsink = ‘ .~ gt P
|  siliconlayer2 s o 7 diel
f Substrate y / / / l L ép
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Thermal Model Equations
T1:Tamb+(X-P1+P2)*Rhs Xty+... = 1
T,=T; +(-y.PL+P;)* Ry
Direct relation between temperature and power
AT = Regi - AP, Ry Ris Rz Ru
- R — R21 R22 R23 R24
eff Ry Ry Rss R
R41 R42 R43 R44
AP =A . AV?F) => AT=R. *A. A(V?F)
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POWER MANAGEMENT ALGORITHM

New approach : Proposed approach

2D approach : approach used in 2D MPSoC

PE temp. monitored independently
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POWER MANAGEMENT ALGORITHM

START

i

—>| Wait for f on control cycle

!

Initial Updates

(Temp-check cycle = 1) ? —

YES
Thermal Runout NO
Convergency check ¢
(converge = true) ?
NO
A
Pull-up / Pull-down YES
N
Write-back and reset < Control period: PMB decides new V-F levels
| Temp-check Period: current temp. available to PMB
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POWER MANAGEMENT ALGO. (ll)

RQI R22 R23 R24
Thermal Runout Regr =

* If temperature crosses safety limit (e.g. 328 K for critical temp of 330 K)

« Operating V-F levels are adjusted

« 2D approach: V-F of victim PE is scaled down

* New approach:
Weight of each PE = (a * (1-utilization) ) + (b * R)

(the row of R+ denoting effect on victim is considered)

Utilization : PE activity in previous control period
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POWER MANAGEMENT ALGOQO. (llI)

START

i

—>| Wait for f on control cycle
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Initial Updates

(Temp-check cycle = 1) ? —
YES

Thermal Runout NO

L

Convergency check

s

(converge = true) ?
NO

N

Pull-up / Pull-down YES

Write-back and reset yam
| Power budget: Constrains peak power of the chip
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POWER MANAGEMENT ALGOQO. (llI)
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| Power budget: Constrains peak power of the chip
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POWER MANAGEMENT ALGO. (IV)
pull-up / pull-down

- 2D approach: V-F scaled according PE utilization ONLY

* New approach: V-F scaled according to a weighted equation

( ¢ * utilization) + (d * temp margin) + ( e * height) + ( f * area)

- V-F of a PE is scaled up only if
« (T + AT ) does not cross safety limit
« Was not scaled down in Thermal Runout stage
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POWER MANAGEMENT ALGO. (V)
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i
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EXPERIMENTAL SETUP (1)

SimpleScalar Application from
Wattch
L i
e
Activity trace for PEs P°w°{;}'|?'|:3:|;m PE
PE 2 I| PE 2 |
PE 1 PE 1] Linear
PE O PE O Regression
P = A*(V’F) + B
Before run-time
(data collection)_____ | _ e
Input files for 3D-ICE
TESTBENCH | die 0
| B stack
Calculate: utilization (each PE), power (each PE),
total power |
. :
Temp. Util. Total Pow. A
3D-ICE

Thermal Simulator

VI/F  ON/OFF
levels states

Power Management
Block

run-time temperature
(simulation) of all PEs

Final temperature report
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EXPERIMENTAL SETUP (lI)

- Control period . 50us (60,000 cycles at max freq)
« Temperature input . every 1ms

« Temperature constraint : 320 K on each PE (strict)

« Safety margin of . 2K

layer 3

6 DVFS levels per PE are taken
- Frequency: 700 — 1200MHz layer 2
- Voltage: 0.8V - 1.1V

layer 1

Deep sleep mode: only clock is gated

Basicmath application from MiBench Benchmark

Two sets of simulation setup
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RESULTS (1)
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RESULTS (I)
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RESULTS (IIl)

H new aproach

B 2D aproach « Similar losses on all layers
layer 3

* Similar execution time

» Total execution time reduces

layer 1

L
1
layer 2
]
|

0 20 40 60 80 100

Performance loss in %

19.55% reduction in total execution time
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CONCLUSIONS

A new power management scheme was proposed

High level thermal model was achieved

Weighted equations were used for choosing V-F levels

Power and temperature were maintained below constraints

Less temperature fluctuations

Up to 19.55% improvement in total execution time

- High Sum of Frequencies - Turning OFF of PEs was avoided
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