

Temperature-Constrained Power Management Scheme for 3D MPSoC

Arnica Aggarwal, Sumeet S. Kumar, Amir Zjajo, Rene van Leuken

Delft University of Technology The Netherlands.

14th May 2012

INTRODUCTION

- Better system integration and performance by scaling down device size
- Further scaling is becoming challenging due to limitations of:
 - interconnect performance leakage power process variation
- 3D integration offers increased system integration and performance

Increased power density

MOTIVATION

- Temperature constraints for power management is important
- DVFS is a widely used power management technique

2D MPSoC	3D MPSoC
 Monitor PE workload only 	
• PE temp. monitored <i>independently</i>	

PE: Processing Element

MOTIVATION

- Temperature constraints for power management is important
- DVFS is a widely used power management technique

Need for new approaches to deal with the differences

PE: Processing Element

OUTLINE

- System modeling
- Power management algorithm
- Experimental setup
- Results
- Conclusions

SYSTEM MODELING (I)

TS: Temperature Sensor **PE**: Processing Element

SYSTEM MODELING (II)

- Each PE has fixed V/F levels: VF1, VF2, VF3, VF4, VF5, VF6
- Relation between Power and DVFS level can be given by: $P = \mathbf{A}.(V^2F) + \mathbf{B}$

 $\Rightarrow \Delta P = A \cdot \Delta(V^2 F)$

Thermal Model Equations

TUDelft

Delft University of Technology

Challenge the future

$$T_{1} = T_{amb} + (x.P_{1} + P_{2}) * R_{hs}$$

$$T_{2} = T_{1} + (-y.P_{1} + P_{2}) * R_{hs}$$

$$x + y + ... = 1$$

Direct relation between temperature and power

$$\Delta \mathsf{T}_{\mathsf{i}} = \mathsf{R}_{\mathsf{eff}_\mathsf{ij}} \cdot \Delta \mathsf{P}_{\mathsf{j}}$$

$$\boldsymbol{R}_{\mathsf{eff}} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & R_{14} \\ R_{21} & R_{22} & R_{23} & R_{24} \\ R_{31} & R_{32} & R_{33} & R_{34} \\ R_{41} & R_{42} & R_{43} & R_{44} \end{pmatrix}$$

 $\Delta P = A \cdot \Delta(V^2 F) \implies \Delta T = R_{eff} * A \cdot \Delta(V^2 F)$

New approach : Proposed approach

<u>2D approach</u> : approach used in 2D MPSoC PE temp. monitored independently

POWER MANAGEMENT ALGO. (II)

<u>Thermal Runout</u>

$$\boldsymbol{R}_{\text{eff}} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & R_{14} \\ R_{21} & R_{22} & R_{23} & R_{24} \\ R_{31} & R_{32} & R_{33} & R_{34} \\ R_{41} & R_{42} & R_{43} & R_{44} \end{pmatrix}$$

- If temperature crosses safety limit (e.g. 328 K for critical temp of 330 K)
 - Operating V-F levels are adjusted
- <u>2D approach</u>: V-F of victim PE is scaled down
- <u>New approach</u>:

Weight of each PE = ($\mathbf{a} * (1 \text{-}utilization)$) + ($\mathbf{b} * R_{eff}$)

(the row of R_{eff} denoting effect on victim is considered)

Utilization : PE activity in previous control period

POWER MANAGEMENT ALGO. (III)

POWER MANAGEMENT ALGO. (III)

POWER MANAGEMENT ALGO. (IV) <u>pull-up / pull-down</u>

- <u>2D approach</u>: V-F scaled according PE utilization **ONLY**
- <u>New approach</u>: V-F scaled according to a weighted equation
 (*c* * utilization) + (*d* * temp margin) + (*e* * height) + (*f* * area)

- V-F of a PE is scaled up only if
 - $(T + \Delta T)$ does not cross safety limit
 - Was not scaled down in *Thermal Runout* stage

POWER MANAGEMENT ALGO. (V)

Delft University of Technology

Challenge the future

EXPERIMENTAL SETUP (I)

Delft University of Technology

Challenge the future

EXPERIMENTAL SETUP (II)

: 50us

- Control period
- Temperature input : every 1ms
- Temperature constraint : 320 K on each PE (strict)
- Safety margin of : 2K
- 6 DVFS levels per PE are taken
 - Frequency: 700 1200MHz
 - Voltage : 0.8V 1.1V
- Deep sleep mode: only clock is gated
- Basicmath application from MiBench Benchmark
- Two sets of simulation setup

PE 9PE 11layer 3PE 8PE 10layer 2PE 5PE 7PE 4PE 6layer 1PE 1PE 3PE 0PE 2

(60,000 cycles at max freq)

RESULTS (I)

RESULTS (II)

Delft University of Technology

Challenge the future

TEMPERATURE OF PE 0

RESULTS (III)

19.55% reduction in total execution time

CONCLUSIONS

- A new power management scheme was proposed
- High level thermal model was achieved
- Weighted equations were used for choosing V-F levels
- Power and temperature were maintained below constraints
- Less temperature fluctuations
- Up to 19.55% improvement in total execution time
 - High Sum of Frequencies Turning OFF of PEs was avoided

Temperature-Constrained Power Management Scheme for 3D MPSoC

Arnica Aggarwal, Sumeet S. Kumar, Amir Zjajo, Rene van Leuken

Delft University of Technology The Netherlands.

14th May 2012

