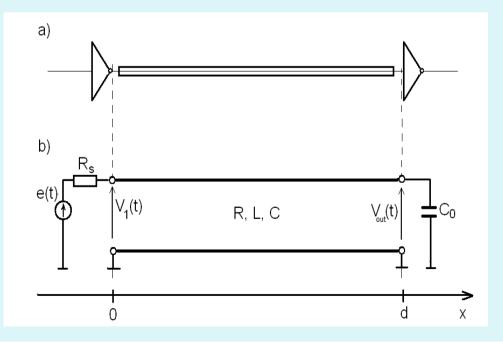
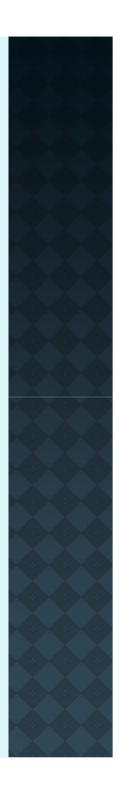
SYSTEM FIDELITY FACTOR IN ANALYSIS OF INVERTER-INTERCONNECT-INVERTER VLSI SYSTEMS


> Wojciech Bandurski Poznan University of Technology Poznan, Poland wojciech.bandurski@put.poznan.pl,


MOTIVATION

- Frequently exists necessity to investigate the influence of system parameters on the shape of the output signal with reference to input signal.
- In the case of large number of parameters, which can take large range of levels comparison is time consuming
- The main goal of this paper is to propose such a tool in form of System Fidelity Factor (SFF) defined as a cross-correlation coefficient of input and output signals.

MAIN RESULTS

• SFF has been applied to analysis the influence of model parameters such as RLC-per unit of length parameters and gate parameters such as R_s and C_0 on shape of the clock signal in inverter-interconnect-inverter system

SERF =
$$\max_{n} \left[\rho_{x,y}^{N}(t_{n}) \right], \quad t_{0} t_{1}, \dots, t_{n} \in T_{o}.$$

$$SFF(K) = \max_{n} \left[\frac{\sum_{k=-K}^{K} |X_{k}|^{2} H_{k} e^{jk\omega_{0}t}}{\sqrt{\sum_{k=-K}^{K} |X_{k}|^{2}} \sqrt{\sum_{k=-K}^{K} |X_{k}|^{2} |H_{k}|^{2}}} \right].$$

Threshold value of SFF is 0.98
Obtained results compared with exact results show that proposed tool is good enough