

C. C. M. BOX MILLING MILLING CONTRACTOR

Efficient Inclusion of Layered Media Green's Functions in Full-wave Analysis of Microstrips

A.G. Chiariello, Second University of Naples

A. Maffucci, Univ. of Cassino and Southern Lazio, ITALY

Outline

- 1) Aim of the work
- 2) Full-Wave TL Model, Enhanced Transmission Line
- 3) Green's Functions Decomposition
- 4) Computational Cost and Truncation Criteria
- 5) Example: Full-Wave Analysis of Microstrips
- 6) Future Works

Aim of the work

Integral electromagnetic formulations

Advantage:

1) Discretization of only the conductor volumes or sometimes the conductor surfaces

2) Regularity conditions at infinity, rigorously imposed

Drawback:

Non-trivial inclusion of inhomogeneous dielectrics Two way:

- 1) Discretize the dielectric domain
- 2) Compute the Green's Function for the domain

Aim of the work

Integral formulations: Inclusion of inhomogeneous dielectrics

1) Discretize the dielectric domain

- Any type of substrate can be included
- Free space Green's function, very simple
- High computation cost

Ref. G.Rubinacci, A.Tanmburrino, IEEE Trans Antenna and Prop., 2006

Aim of the work

Integral formulations: Inclusion of inhomogeneous dielectrics

2) Compute the Green's Function for the domain

- Can be derived only for stratified media
- Can't be computed analitically
- Can have an high computational cost (lots of terms, Hankel functions)

Ref. V. N. Kourkoulos and A. C. Cangellaris, IEEE Trans. Antennas Propag., 2006

Full-Wave EFIE Model

Electrical Field Integral Equation

1) The electric field E is expressed in terms of scalar and vector potentials

$$\boldsymbol{E} = -j\boldsymbol{\omega}\boldsymbol{A} - \nabla\boldsymbol{\varphi}$$

2) The potentials are related to the "sources"

$$\boldsymbol{A}(\boldsymbol{r}) = \mu_0 \iiint_{V} \underline{G}_{A}(\boldsymbol{r}, \boldsymbol{r}') \cdot \boldsymbol{J}(\boldsymbol{r}') dV$$
$$\varphi(\boldsymbol{r}) = \frac{1}{\varepsilon_0} \iiint_{V} G_{\phi}(\boldsymbol{r}, \boldsymbol{r}') \cdot \rho(\boldsymbol{r}') dV$$

Ref. J. S. Zhao and W. C. Chew, IEEE Trans. on Antennas and Propagation, 2000

Full-Wave TL Model: enhanced TL model

$$\frac{\mathrm{d}I(x)}{\mathrm{d}x} = -i\omega \mathcal{Q}(x), \quad \frac{\mathrm{d}V(x)}{\mathrm{d}x} = -i\omega \Phi(x),$$

$$\Phi(x) = \mu_0 \int_0^t H_I(x-x')I(x')\mathrm{d}x'$$

$$P(x) = \frac{1}{\varepsilon_0} \int_0^t H_Q(x-x')\mathcal{Q}(x')\mathrm{d}x'.$$

$$H_I^{ik} = \frac{1}{c_i} \int_{\Gamma_i} \mathrm{d}s_i \oint_{\Gamma_k} G_A^{xx}(s_i,s_k';\zeta)F_i(s_k')\mathrm{d}s_k'$$

$$H_Q^{ik} = \frac{1}{c_i} \int_{\Gamma_i} \mathrm{d}s_i \oint_{\Gamma_k} G_{\varphi}(s_i,s_k';\zeta)F_i(s_k')\mathrm{d}s_k'$$

$$Ref. A. G. Chiariello, A. Maffucci, G. Miano, F. Villone and W. Zamboni, IEEE Trans. on Advanced Packaging, 2008$$

Green's Functions for layered media

$$\underline{\underline{G}_{A}}(r,z,z') = \frac{1}{4\pi} \int_{-\infty}^{+\infty} \underline{\tilde{G}_{A}}(k_{\rho}) H_{0}^{(2)}(k_{\rho}r) k_{\rho} dk_{\rho}$$

$$G_{\varphi}(r,z,z') = \frac{1}{4\pi} \int_{-\infty}^{+\infty} \tilde{G}_{\varphi}(k_{\rho}) H_0^{(2)}(k_{\rho}r) k_{\rho} dk_{\rho}$$

Ref. A. G. Chiariello, A. Maffucci, Journal Of Electromagnetic Analysis And Applications, 2012

Hypothesis:

Dielectric substrate infinite in the x-y plane and layered in the z direction

There are closed form expressions of the GFs (spectral domain for layered media.

$${\displaystyle \underbrace{\widetilde{G}_{A}}}{\displaystyle =}$$
 and ${\displaystyle \widetilde{G}_{arphi}}$ in the

The numerical computation of Sommerfeld integrals is time consuming.

Green's Functions for layered media

$$\tilde{G}\left(k_{\rho}\right) = \tilde{G}_{as}\left(k_{\rho}\right) + \tilde{G}_{r}\left(k_{\rho}\right)$$

The quasi-dynamic term $\tilde{G}_{AS}(k_{\rho})$ is the asymptotic value when $k_{\rho} \rightarrow \infty$

The corresponding spatial domain term dominates the near field interaction, i.e. the low frequency and low distance ranges.

The quasi-dynamic term has a simple analytical expression.

Green's Function: quasi-dynamic term

Single layer Microstrip

General case of multilayer media On-chip interconnect

In the general case, the static image can be extracted using a wave tracing algorithm

Ref. F.Ling, V.Okhmatovski, B. Song, and A.Dengi, IEEE LAWP, 2007

Green's Functions for layered media

$$\tilde{G}\left(k_{\rho}\right) = \tilde{G}_{as}\left(k_{\rho}\right) + \tilde{G}_{r}\left(k_{\rho}\right)$$

The dynamic term $\tilde{G}_r(k_{\rho})$ is approximated in the spectral domain in terms of functions that lead to closed-form expressions of Sommerfeld integral

$$\tilde{G}_r\left(k_{\rho}\right) = \sum_{k=1}^{N} a_k e^{-b_k k_{zr}}$$
$$\tilde{G}_r\left(k_{\rho}\right) = \sum_{k=1}^{N} \frac{a_k}{k_{\rho}^2 - p_k^2},$$

Ref[1] M. I. Aksun and G. Dural, IEEE Trans. on AP, Vol.53, No. 11, 2005

Ref[2] V. I. Okhmatovski and A. C. Cangellaris,IEEE Trans. on AP, Vol.54, No. 7, 2002

Ref[3] V.N. Kourkoulos and A.C. Cangellaris, IEEE Trans. On AP, Vol.54, (2006).

Ref[4] F. Mesa, R.R. Boix, F. Medina, IEEE Trans. MTT, Vol.56, No.7, (2008),

Green's Functions for layered media

Spatial domain

$$G(\rho) = G_{as}(\rho) + G_r(\rho)$$

$$G_{r}(\rho) = \sum_{k=1}^{N} a_{k} \frac{e^{-jkr_{bk}}}{r_{bk}} ;$$

$$G_{r}(\rho) = -\frac{i}{4} \sum_{k=1}^{N} a_{k} H_{0}^{(2)}(p_{k}r)$$

The dynamic term $G_r(\rho)$ in the spatial domain is approximated by a combination of spherical waves and cylindrical waves

The computation of the dynamic term can be time consuming

Green's Function: quasi-dynamic term

Single layer Microstrip

Green's Function: approximation criteria

Green's Function: approximation criteria map

Green's Function: criteria for quasi-dyn term satisfied

Current distribution: quasi-dyn GF vs total

Green's Function: criteria for quasi-dyn term NOT satisfied

Current distribution: quasi-dyn GF vs total

Absorbed real power: including loss

w 1 = w 2 = 0.33 mm s = 2^*w1 $\epsilon r = 4.2$ f = 1GHz t = 0.20 mm L= 10 mm

The FW effect are much more important than the dielectric and conductor losses.

Conclusions

- 1. The quasi-dynamic approximation lowers the computational cost of the Green Functions
- 2. Two simple criteria are derived to establish whether the quasidynamic terms approximate the complete Green's functions for fullwave analysis of microstrip. The criteria involve the dielectric thickness and the line length.
- 3. When the criteria are satisfied, the quasi-dynamic terms take into account correctly the Full Wave effects

Future Works

- 1. Extend the criteria to the multi layers case (on-chip interconnect)
- 2. Analyze non planar structure, Vias etc.

