

Parameterized Model Order Reduction of Delayed Systems using an Interpolation Approach with Amplitude and Frequency Scaling Coefficients

F. Ferranti*, M. Nakhla**, G. Antonini[†], T. Dhaene*, L. Knockaert*, A. E. Ruehli^{††}

- * Department of InformationTechnology (INTEC), Ghent University IBBT
- ** Department of Electronics, Carleton University
- [†] Dipartimento di Ingegneria Elettrica e dell'Informazione, Università degli Studi dell'Aquila
- †† Electromagnetic Compatibility Laboratory, Missouri University of Science and Technology

Outline

Introduction

PMOR for delayed systems

Numerical results

Conclusions

Outline

Introduction

PMOR for delayed systems

Numerical results

Conclusions

- design space optimization
- design space exploration
- sensitivity analysis
 - multiple simulations (measurements)
 - different design parameters values (e.g. layout features)

- Multiple simulations (measurements)
 - computationally expensive (time and memory)

A typical design process requires

- Multiple simulations (measurements)
 - computationally expensive (time and memory)

Can we do better?

A typical design process requires

- Multiple simulations (measurements)
 - computationally expensive (time and memory)

Can we do better?

- Yes
 - By parameterized reduced order models

parameterized reduced order model

Outline

Introduction

PMOR for delayed systems

Numerical results

Conclusions

Compute τ ROMs $\mathbf{R}(s, \mathbf{g}_k^{\Omega_i})$ in the estimation design space grid

Design space
$$g = (g^{(n)})_{n=1}^N$$

Compute scaling and frequency shifting coefficients $\alpha_{1,k}(\mathbf{g}_{i}^{\Omega_{i}}), \alpha_{2,k}(\mathbf{g}_{i}^{\Omega_{i}})$

in the estimation design space grid

Multivariate interpolation of scaling and frequency shifting coefficients $\alpha_1(\mathbf{g}), \alpha_2(\mathbf{g})$

> Multivariate interpolation of scaled and shifted τ ROMs $\alpha_1(\mathbf{g})\mathbf{R}(s\alpha_2(\mathbf{g}),\mathbf{g})$

Features

• each design space cell has its own model

- each design space cell has its own model
- local approach

- each design space cell has its own model
- local approach
- independent from a specific MOR method

- each design space cell has its own model
- local approach
- independent from a specific MOR method
- stability and passivity guaranteed over the design space

- each design space cell has its own model
- local approach
- independent from a specific MOR method
- stability and passivity guaranteed over the design space
- suitable to robust adaptive sampling

- each design space cell has its own model
- local approach
- independent from a specific MOR method
- stability and passivity guaranteed over the design space
- suitable to robust adaptive sampling
- different flavours

Compute τ ROMs $\mathbf{R}(s, \mathbf{g}_k^{\Omega_i})$ in the estimation design space grid

Compute scaling and frequency shifting coefficients

$$\alpha_{1,k}(\mathbf{g}_{j}^{\Omega_{i}}), \alpha_{2,k}(\mathbf{g}_{j}^{\Omega_{i}})$$

in the estimation design space grid

Multivariate interpolation of scaling and frequency shifting coefficients $\alpha_1(\mathbf{g}), \alpha_2(\mathbf{g})$

> Multivariate interpolation of scaled and shifted τ ROMs $\alpha_1(\mathbf{g})\mathbf{R}(s\alpha_2(\mathbf{g}),\mathbf{g})$

τROMs at the cell vertices

F. Ferranti, M. Nakhla, G. Antonini, T. Dhaene, L. Knockaert, A. Ruehli, "Multipoint Full-Wave Model Order Reduction for Delayed PEEC Models with Large Delays", IEEE Transactions on Electromagnetic Compatibility, vol. 53, no. 4, pp. 959-967, November 2011

Compute τ ROMs $\mathbf{R}(s, \mathbf{g}_k^{\Omega_i})$ in the estimation design space grid

Compute scaling and frequency shifting coefficients

$$\alpha_{1,k}(\mathbf{g}_j^{\Omega_i}), \alpha_{2,k}(\mathbf{g}_j^{\Omega_i})$$

in the estimation design space grid

Multivariate interpolation of scaling and frequency shifting coefficients $\alpha_1(\mathbf{g}), \alpha_2(\mathbf{g})$

Multivariate interpolation of scaled and shifted τ ROMs $\alpha_1(\mathbf{g})\mathbf{R}(s\alpha_2(\mathbf{g}),\mathbf{g})$

$$\min_{\alpha_{1,k}(\mathbf{g}_{j}^{\widehat{\Omega}}),\alpha_{2,k}(\mathbf{g}_{j}^{\widehat{\Omega}})} Err(\widetilde{\mathbf{R}}(s,\boldsymbol{g}_{k}^{\widehat{\Omega}}),\mathbf{R}(s,\boldsymbol{g}_{j}^{\widehat{\Omega}}))$$

$$\widetilde{\mathbf{R}}(s, \boldsymbol{g}_{k}^{\widehat{\Omega}}) = \alpha_{1,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}})\mathbf{R}(s\alpha_{2,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}), \boldsymbol{g}_{k}^{\widehat{\Omega}})$$
$$\alpha_{1,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}) = \alpha_{2,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}) = 1, \ j = k$$

$$\min_{\alpha_{1,k}(\mathbf{g}_{j}^{\,\widehat{\Omega}}),\alpha_{2,k}(\mathbf{g}_{j}^{\,\widehat{\Omega}})} Err(\widetilde{\mathbf{R}}(s,\boldsymbol{g}_{k}^{\,\widehat{\Omega}}),\mathbf{R}(s,\boldsymbol{g}_{j}^{\,\widehat{\Omega}}))$$

$$\widetilde{\mathbf{R}}(s, \boldsymbol{g}_{k}^{\widehat{\Omega}}) = \alpha_{1,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}})\mathbf{R}(s\alpha_{2,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}), \boldsymbol{g}_{k}^{\widehat{\Omega}})$$

$$\alpha_{1,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}) = \alpha_{2,k}(\boldsymbol{g}_{j}^{\widehat{\Omega}}) = 1, \ j = k$$

Compute τ ROMs $\mathbf{R}(s, \mathbf{g}_k^{\Omega_i})$ in the estimation design space grid

Compute scaling and frequency shifting coefficients

$$\alpha_{1,k}(\mathbf{g}_j^{\Omega_i}), \alpha_{2,k}(\mathbf{g}_j^{\Omega_i})$$

in the estimation design space grid

Multivariate interpolation of scaling and frequency shifting coefficients $\alpha_1(\mathbf{g}), \alpha_2(\mathbf{g})$

> Multivariate interpolation of scaled and shifted τ ROMs $\alpha_1(\mathbf{g})\mathbf{R}(s\alpha_2(\mathbf{g}),\mathbf{g})$

Compute τ ROMs $\mathbf{R}(s, \mathbf{g}_k^{\Omega_i})$ in the estimation design space grid

Compute scaling and frequency shifting coefficients

$$\alpha_{1,k}(\mathbf{g}_j^{\Omega_i}), \alpha_{2,k}(\mathbf{g}_j^{\Omega_i})$$

in the estimation design space grid

Multivariate interpolation of scaling and frequency shifting coefficients $\alpha_1(\mathbf{g}), \alpha_2(\mathbf{g})$

Multivariate interpolation of scaled and shifted τ ROMs $\alpha_1(\mathbf{g})\mathbf{R}(s\alpha_2(\mathbf{g}),\mathbf{g})$

$$\alpha_{1,3}(\hat{\mathbf{g}}^{\widehat{\Omega}})\mathbf{R}(\alpha_{2,3}(\hat{\mathbf{g}}^{\widehat{\Omega}})s,\mathbf{g}_{3}^{\widehat{\Omega}}) \qquad \alpha_{1,4}(\hat{\mathbf{g}}^{\widehat{\Omega}})\mathbf{R}(\alpha_{2,4}(\hat{\mathbf{g}}^{\widehat{\Omega}})s,\mathbf{g}_{4}^{\widehat{\Omega}})$$

$$\widehat{\Omega}$$

$$\mathbf{R}(s,\hat{\mathbf{g}}^{\widehat{\Omega}}) = interp(\mathbf{g}_{j}^{\widehat{\Omega}},\alpha_{1,j}(\hat{\mathbf{g}}^{\widehat{\Omega}})\mathbf{R}(\alpha_{2,j}(\hat{\mathbf{g}}^{\widehat{\Omega}})s,\mathbf{g}_{j}^{\widehat{\Omega}}),\hat{\mathbf{g}}^{\widehat{\Omega}})$$

$$\alpha_{1,1}(\hat{\mathbf{g}}^{\widehat{\Omega}})\mathbf{R}(\alpha_{2,1}(\hat{\mathbf{g}}^{\widehat{\Omega}})s,\mathbf{g}_{1}^{\widehat{\Omega}}) \qquad \alpha_{1,2}(\hat{\mathbf{g}}^{\widehat{\Omega}})\mathbf{R}(\alpha_{2,2}(\hat{\mathbf{g}}^{\widehat{\Omega}})s,\mathbf{g}_{2}^{\widehat{\Omega}})$$

$$\mathbf{R}(s,\widehat{g}^{\widehat{\Omega}}) = \sum_{k_1=1}^{2} \sum_{k_2=1}^{2} \widetilde{\mathbf{R}}(s,(g_{k_1}^{(1)},g_{k_2}^{(2)})^{\widehat{\Omega}}) \ell_{k_1}(g^{(1)}) \ell_{k_2}(g^{(2)})$$

Outline

Introduction

PMOR for delayed systems

Numerical results

Conclusions

3D example: Bends

Parameter	Min	Max
Frequency $(freq)$	100 kHz	10 GHz
Length (L)	1 cm	1.3 cm
Spacing (S)	2.5 mm	3 mm

Estimation grid by solver (6×5) (L,S) Validation grid by solver (5×4) (L,S)

(Order, delays) of au PEEC models and au ROMs.

	auPEEC models	τROMs
(L_1, S_1)	(2124,510)	(64,510)
(L_2, S_1)	(2124,508)	(64,508)
(L_3, S_1)	(2124,510)	(64,510)
(L_4, S_1)	(2124,511)	(64,511)
(L_5, S_1)	(2124,517)	(64,517)
(L_6, S_1)	(2124,519)	(64,519)
(L_1, S_2)	(2124,509)	(64,509)
(L_2, S_2)	(2124,511)	(64,511)
(L_3, S_2)	(2124,513)	(64,513)
(L_4, S_2)	(2124,512)	(64,512)
(L_5, S_2)	(2124,519)	(64,519)
(L_6, S_2)	(2124,520)	(80,520)
(L_1, S_3)	(2124,511)	(64,511)
(L_2, S_3)	(2124,514)	(64,514)
(L_3, S_3)	(2124,518)	(64,518)
(L_4, S_3)	(2124,515)	(64,515)
(L_5, S_3)	(2124,518)	(64,518)
(L_6, S_3)	(2124,522)	(64,522)
(L_1, S_4)	(2124,511)	(64,511)
(L_2, S_4)	(2124,512)	(64,512)
(L_3, S_4)	(2124,519)	(64,519)
(L_4, S_4)	(2124,519)	(64,519)
(L_5, S_4)	(2124,519)	(64,519)
(L_6, S_4)	(2124,527)	(64,527)
(L_1, S_5)	(2124,510)	(64,510)
(L_2, S_5)	(2124,513)	(64,513)
(L_3, S_5)	(2124,518)	(64,518)
(L_4, S_5)	(2124,520)	(64,520)
(L_5,S_5)	(2124,519)	(80,519)
(L_6, S_5)	(2124,524)	(64,524)

Original order	2124
Reduced order	64-272

Step	CPU time
Evaluating solver (one frequency response - 1 sample)	15 s
Evaluating model (one frequency response - 1 sample)	0.24 s

Original order	2124
Reduced order	64-272

Step	CPU time
Evaluating solver (one frequency response - 1 sample)	15 s
Evaluating model (one frequency response - 1 sample)	0.24 s

Speed-up 62.5 x

S=2.69 mm

L=1.15 mm

Outline

Introduction

PMOR for delayed systems

Numerical results

Conclusions

parameterized reduced order model

- each design space cell has its own model
- local approach
- independent from a specific MOR method
- stability and passivity guaranteed over the design space
- suitable to robust adaptive sampling
- different flavours

Questions

Contact info: francesco.ferranti@ugent.be

Recent publications

- F. Ferranti, M. Nakhla, G. Antonini, T. Dhaene, L. Knockaert, A. Ruehli, "Multipoint Full-Wave Model Order Reduction for Delayed PEEC Models with Large Delays", IEEE Transactions on Electromagnetic Compatibility, vol. 53, no. 4, pp. 959-967, November 2011
- F. Ferranti, M. Nakhla, G. Antonini, T. Dhaene, L. Knockaert, A. E. Ruehli, "Interpolation-based Parameterized Model Order Reduction of Delayed Systems", IEEE Trans. on Microwave Theory and Techniques, vol. 60, no. 3, pp. 431-440, March 2012.

Contact info: francesco.ferranti@ugent.be

