Improving the Accuracy of Rational Macromodels via Mode-Revealing Transformation

Bjørn Gustavsen

SINTEF Energy Research , Norway

IEEE Workshop on Signal and Power Integrity (SPI) Sorrento, Italy, May 13-16, 2012

SINTEF Energy Research

Background

- Passive macromodeling of linear devices and systems is based on rational function approximation.
- The current practice for admittance-based modeling leads to models that are
 - <u>Accurate</u> in applications with low-impedance terminations.
 - Sometimes <u>very inaccurate</u> with high-impedance terminations.

Problem:

- Error magnification
- Occurs for Y with large condition number (case-dependent).

Existing solutions

Modal Vector Fitting (model extraction)

- Complex implementation
- CPU intensive
- Patented

Modal Perturbation (passivity enforcement)

- Complex implementation
- CPU intensive
- Patented

This presentation: Alternative approach

Admittance-based modeling

Admittance matrix Y defines the current response i(ω) due to a voltage application v(ω).

The model is most accurate when applied in simulations with voltage applications, i.e. low-impedance terminations.

Error magnification: single terminal case

Direct fitting of $y(\omega)$ gives a model minimizing global error.

Relative error is large where $y(\omega)$ **is small in magnitude.**

Large error magnifications result when applying current to the model since the voltage response is given by z=y⁻¹(ω) which is large where y(ω) is small,

Avoiding error magnification:

Introduce least squares weighting equal to the inverse of the $|y(\omega)| \rightarrow \underline{\text{relative error control}}$ weight $(\omega) = \frac{1}{|y(\omega)|}$

Error magnification: Multi-terminal case

How to avoid error magnifications?

Intuitive approach:
Apply inverse weighting to individual elements
weight_{ij}(ω) = $\frac{1}{|\mathbf{Y}_{ij}(\omega)|}$

This <u>not</u> the answer Reason: The matrix inverse is not equal to the matrix of inverse elements, $(\mathbf{Y}^{-1})_{ij} \neq (\mathbf{Y}_{ij})^{-1}$

Error magnification: The modal view

The matrix inverse implies inverse eigenvalues

Eigenvector matrix Eigenvalue matrix (diagonal) $\mathbf{Y}(\omega) = \mathbf{T}_{Y}(\omega) \mathbf{\Lambda}_{Y}(\omega) \mathbf{T}_{Y}^{-1}(\omega)$

$$\mathbf{Y}^{-1}(\boldsymbol{\omega}) = \left(\mathbf{T}_{Y}(\boldsymbol{\omega})\mathbf{\Lambda}_{Y}(\boldsymbol{\omega})\mathbf{T}_{Y}^{-1}(\boldsymbol{\omega})\right)^{-1} = \mathbf{T}_{Y}(\boldsymbol{\omega})\mathbf{\Lambda}_{Y}^{-1}(\boldsymbol{\omega})\mathbf{T}_{Y}^{-1}(\boldsymbol{\omega})$$

The eigenvalues of \mathbf{Y} are equal to the inverse eigenvalues of \mathbf{Y}^{-1}

The fitting should be performed in such way that the accuracy of the eigenvalues is preserved in the *relative* sense.

Mode Revealing Transformation

Apply a <u>suitable</u> orthogonal similarity transformation to Y

$$\tilde{\mathbf{Y}} = \mathbf{T}^{-1}\mathbf{Y}\mathbf{T}$$

- Final $\tilde{\mathbf{Y}}$ and \mathbf{Y} have identical eigenvalues (similarity transformation) $\lambda_{\tilde{\mathbf{Y}}} = \lambda_{\mathbf{Y}}$
- Objective: Make the eigenvalues are more visible in $\tilde{\mathbf{Y}}$ than in $\mathbf{Y}.$
- Fitting the elements of Y using inverse weighting for its elements gives high accuracy for all eigenvalues of Y.

$$\lambda_{\operatorname{Re}\{\tilde{\mathbf{Y}}\}} = \lambda_{\operatorname{Re}\{\mathbf{Y}\}}$$

Computing a suitable T₀

- Identify frequency ω_0 where the ratio between the largest and smallest eigenvalue in $\mathbf{Y}(\omega)$ is maximum.
- **Calculate eigenvalue decomposition at** $\omega = \omega_0$

 $\mathbf{Y}(\boldsymbol{\omega}_0) = \mathbf{T}(\boldsymbol{\omega}_0) \boldsymbol{\Lambda}(\boldsymbol{\omega}_0) \mathbf{T}^{-1}(\boldsymbol{\omega}_0)$

- Modify $\mathbf{T} \rightarrow \mathbf{T}_0$
 - Rotate eigenvectors to minimize imaginary part
 - Discard imaginary part
 - Enforce orthogonality

$$\mathbf{T}_0 = \mathbf{Q}\mathbf{R}, \ \mathbf{Q} \to \mathbf{T}_0$$

Apply T₀ to Y at all frequencies as a similarity transformation,

$$\tilde{\mathbf{Y}}(\boldsymbol{\omega}) = \mathbf{T}_0^{-1} \, \mathbf{Y}(\boldsymbol{\omega}) \, \mathbf{T}_0$$

Model Extraction

Fit a rational model to $\tilde{\mathbf{Y}}$

- Vector Fitting w/ relaxation and sparse utilization
- Relative error control (inverse magnitude weighting of each $\tilde{\mathbf{Y}}_{ij}$)

$$\tilde{\mathbf{Y}}(\omega) \approx \tilde{\mathbf{R}}_0 + \sum_{p=1}^P \frac{\tilde{\mathbf{R}}_p}{j\omega - a_p}$$

Enforce passivity of model
 Residue perturbation
 Relative error control

 $\tilde{\mathbf{R}}_{p} \to \tilde{\mathbf{R}}_{p} + \Delta \tilde{\mathbf{R}}_{p} , p = 0 \dots P$ such that $\lambda_{\mathrm{Re}\{\tilde{\mathbf{Y}}\}} > 0 \forall \omega$

Apply inverse similarity transform to the model

$$\mathbf{R}_{p} = \mathbf{T}_{0} \tilde{\mathbf{R}}_{p} \mathbf{T}_{0}^{-1} , p = 0 \dots P$$

Example: 30 kVA distribution transformer

Elements of Y

Applying Mode-Revealing Transformation

$$\omega_0 = 2\pi \cdot 100 \,\mathrm{Hz}$$

$$\tilde{\mathbf{Y}}(\boldsymbol{\omega}) = \mathbf{T}_0^{-1} \, \mathbf{Y}(\boldsymbol{\omega}) \, \mathbf{T}_0$$

- Compute eigenvector matrix \mathbf{T}_0 of $\mathbf{Y}(\omega_0)$
- Rotate $\mathbf{T}_{0,i}$, i=1..n, discard imaginary part
- Orthogonalization

The diagonal elements of $\tilde{\mathbf{Y}}$ resemble the eigenvalues of \mathbf{Y}

Rational Modeling

Fit a rational model to $\tilde{\mathbf{Y}}$

$$\tilde{\mathbf{Y}}(\omega) \approx \mathbf{R}_0 + \sum_{p=1}^{P} \frac{\mathbf{R}_p}{j\omega - a_p}$$
 (P=60)

Algorithm: Vector Fitting w/inverse LS weighting weight_{ij}(ω) = $\frac{1}{|\tilde{\mathbf{Y}}_{ij}(\omega)|}$

Transform model back to the "physical domain"

$$\mathbf{R}_p = \mathbf{T}_0 \tilde{\mathbf{R}}_p \mathbf{T}_0^{-1} , p = 0 \dots P$$

Check on eigenvalues

Eigenvalues of Y

New approach

 \rightarrow retains accuracy of the eigenvalues of **Y**

Conventional approach (direct fitting of **Y** w/ inverse weight)

 \rightarrow corrupts the small eigenvalues

Model Accuracy With Current Application

New approach

 \rightarrow "Accurate" result

Conventional approach

 \rightarrow Large error magnifications

Enforce passivity of Y

Algorithm: Residue perturbation w/inverse LS weighting weight_{ij}(ω) = $\frac{1}{|\tilde{Y}_{ij}(\omega)|}$

Transform model back to the "physical domain" $\mathbf{R}_{p} = \mathbf{T}_{0} \tilde{\mathbf{R}}_{p} \mathbf{T}_{0}^{-1}$, $p = 0 \dots P$

Conclusions

- A new method has been proposed for pole-residue modeling of the terminal admittance matrix, Y.
- Relies on a similarity transformation obtained from the eigenvector matrix of Y.
 - Preserves symmetry, eigenvalues and passivity of Y.
 - The eigenvalues of the transformed matrix Y are more observable than in the original Y (mode-revealing transformation).
 - Model extraction and passivity enforcement of \tilde{Y} by standard methods preserves accuracy of eigenvalues.
- The rational model is less prone to error magnifications than with conventional approach.
- Simple to implement, fast.

