

FACULTY OF ENGINEERING

Tree-Based Sequential Sampling Algorithm for Scalable Macromodeling of High-Speed Systems

Krishnan Chemmangat krishnan.cmc@intec.ugent.be www.ibcn.intec.ugent.be Internet Based Communication Networks and Services (IBCN) Department of Information Technology (INTEC) Ghent University - IBBT

GFNT

Authors: Krishnan Chemmangat, Francesco Ferranti, Tom Dhaene and Luc Knockaert

> Proposed method

> Numerical example

Results

Conclusions

Proposed method

> Numerical example

Results

Conclusions

Real world system.

Introduction

Measurements

- Design space exploration
- Design
 - optimization
- Sensitivity

analysis...

> Proposed method

> Numerical example

Results

Conclusions

> Proposed method

- Flow Chart
- > Parametric macromodeling
- > Numerical example
- Results

Conclusions

📕 ibbt

ibbt 🔊

> Proposed method

- Flow Chart
- Parametric macromodeling
- Numerical example
- Results

Conclusions

Parametric macromodeling

Root macromodels:

- System identification
 - Vector Fitting :bottom-up approach
 - Passivity enforcement.

Parametric macromodeling:

- Interpolation based.
 - Scaling and frequency shifting *
 - Passivity preserving.

*F. Ferranti, L. Knockaert, and T. Dhaene, "Passivity-preserving parametric macromodeling by means of scaled and shifted state-space systems," IEEE Tr. on MTT, vol. 59, no. 10, pp. 2394 –2403, Oct. 2011.

Proposed method

> Numerical example

Results

Conclusions

Ex.:Four Coupled Microstrips

Fixed parameters:

- Width = 0.025 mm
- $\mathcal{E}_{\rm r} = 9.6$

NIVERSITEIT GENT

- Thickness = 0.125 mm
- Varying parameter

Parameter	Range	
	Min	Max
Frequency	0 GHz	10 GHz
Spacing (S)	0.05 mm	0.15 mm
Length (L)	5 mm	10 mm

Ex.:Four Coupled Microstrips

Simulation settings

Mean Absolute Error

$$E_{rr}^{\text{MAE}}(\vec{g}) = \frac{\sum_{i=1}^{P_{in}} \sum_{j=1}^{P_{out}} \sum_{k=1}^{N_s} \left| R_{i,j}(s_k, \vec{g}) - H_{i,j}(s_k, \vec{g}) \right|}{P_{in} P_{out} N_s}$$

- Stopping criteria $\Delta g/g = 0.05$ (i.e., 5%).
- # frequency samples $N_S = 51$.

• Stability and passivity enforced.

> Proposed method

> Numerical example

Results

Conclusions

Modeling accuracy		#	
Target [dB]	Achieved [dB]	samples	0.14
-40	-47.98	9	E 0.12
-45	-47.98	9	
-50	-50.80	14	Ö 0.08 - • •
-55	-55.88	22	0.06
-60	-60.07	42	0.04 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 Length [mm]

Final design space (for -60 dB).

Results

NIVERSITEIT GENT

mm.

 P_8

Proposed method

> Numerical example

Results

Conclusions

• The method is local and hence portable to parallel computing platforms.

- The method is local and hence portable to parallel computing platforms.
- Extending the tree as per the accuracy requirement → multi-fidelity models.

- The method is local and hence portable to parallel computing platforms.
- Extending the tree as per the accuracy requirement → multi-fidelity models.
- Property-preserving parametric macromodeling methods.

- The method is local and hence portable to parallel computing platforms.
- Extending the tree as per the accuracy requirement → multi-fidelity models.
- Property-preserving parametric macromodeling methods.

Future direction:

• Extension to scattered grids.

GENT

