SPI2012

More speed. Less energy

2-Channel 2-Layer Inner-Stack Memory-module Design for LPDDR2/3 DRAM

May 14, 2012

Jongjoo Lee

jjdragon@ieee.org

Joon Ki Paek and Joonhee Lee Solution Development Team Memory Division Samsung Electronics

samsung.com/greenmemory

SAMSUNG

2012.05.14 / Jongjoo Lee / Solution Development

Outline

SAMSUNG PROPRIETRY

More speed. Less energy

- 1. Introduction
 - 1. Mobile Era vs. LPDDR2/3 DRAM
 - 2. ISM: Inner-Stack Memory-module
- 2. 2-channel ISM design for LPDDR2/3 using 2-layer PCB
 - **1.** Analysis on Conventional ISM for MDDR
 - 2. Ideation & Design
- 3. Simulation Results (Performance)
- 4. Conclusions

Mobile Era: Always On, Always Connected

The Explosion of Connected Devices in the Mobile-Era

The continuous synchronization of contents among connected devices is creating better end-user experiences

Courtesy: Samsung EDP Product Planning (2Q'11)

Mobile Life

Happiness and Enjoyment in the Mobile World

Mobile DRAM Bandwidth Requirement

Mobile DRAM B/W requirement is growing faster.

- ♦ MDDR ('05) → LPDDR2 ('10, 2x) → LPDDR3 ('12, 4x)
- ***** High B/W & Density for Graphic & Multimedia performance
 - > Graphic resolution increase (1.7x/year) \rightarrow Bandwidth increment
 - 60fps 5-layer full screen UI for Tablet, 60fps 3-layer full screen UI for S.P
 - 1080P enc/dec, 4X/8X-FSAA, HDR, bigger texture size, continuous shots

Specification

Item		LPDDR2 LPDDR3		Unit	Remark		
Feature	CLK frequency	333 / 400 / 533	667 / 800	MHz			
	Max. B/W (1ch / 2ch)	4.25 / 8.5	6.4 / 12.8	GB/s			
	CLK/DQS scheme	Differential, Bi-directional					
	Data/ADDR/CMD scheme	DDR, Single-ended					
	Organization	x16 / x32					
	Signaling convention	LVCMOS ("HSUL_12")					
	Signaling circuits	• Output: CMOS push • Input: Diff-amp w/e	l diff-an	np (Strobe)			
Power	VDD1/VDD2/VDDQ/VDDCA	1.8 / 1.2 / 1.2 / 1.2					
	tIS / tIH tDS / tDH	220 / 220 210 / 210	155 / 155 150 / 150	ps	LP2 spec.: 1066Mbps		
Timing	tDQSQ / tQHS	200 / 230	145 / 160	ps	LP3 spec.: 1600Mbps		
Timing Parameter	In/Out Capacitance	CA : 1.0 ~ 2.0CA : 0.75 ~ 1.5DQ : 1.25 ~ 2.5DQ : 1.0 ~ 2.0		pF	On-chip		
	VIH/VIL	VREF +/- 0.22 (AC) VREF +/- 0.13 (DC)	VREF +/- 0.15 (AC) VREF +/- 0.1 (DC)	v	VREF = 0.5 * VDDQ		
Special Function	PASR, TCSR, Deep Power Down, ZQ Calibration, DQ Calibration						
	CA Calibration	N/A	Support				
	Write Leveling	N/A	Support				
	ODT	N/A	Support *		* VDDQ Term (POD)		
LPDDR3 has little changes from LPDDR2 for easy adoption, only a few functions for 1600Mbps operation							

LPDDR2/3 Value Proposition

Samsung LPDDR2 & 3 give differentiated user experiences

- *** Higher Performance**
- Longer Battery Life
- Smaller & Thinner package solution

Courtesy: Samsung Mobile Product Planning

Challenges in Mobile DRAM Channel

Mobile Channel Characteristics

***** P2P w/o Termination (Open term) for lower power consumption

➤ Typical DRAM Channel Length (AP ↔ DRAM) = 10 ~ 50mm

- Can acts like $\lambda/4$ resonator
 - @ 50mm channel: resonance frequency ~ 730MHz
 - » It can be checked by evaluating Z_{21} .

> Small energy couplings can induce large distortions

Power Noise can make serious signal integrity issue.

Combined analysis of SI & PI is important.

One of Rep. Measures: Short Channel

* PoP

- DRAM package on AP/Chipset package
- Channel in PKG-level (No routing on Board PCB)

PiP using ISM

- > Even shorter channel length is possible.
- Removal of package-level SMT process

Wide I/O (TSV)

ISM (Inner-Stack Memory Module)

Analysis on Conventional ISM for MDDR

I-channel in 12 x 12 mm²

A PCB design example (117LGA type)

Design Target (initial)

- Supporting LPDDR2 operation in 2-channel: 800Mbps @ 1.2V
- * Similar Performance/SI: ISM Bond finger vs. Test pad
- Chip equivalent size: 10 x 10 mm² & Low height
 - Alternative to a KGD (known good die)
 - > 2 metal-layers PCB with a thin dielectric core

Key directions

- Short routing length
 - by closing up the test pad to the ISM bond finger
- Configurational Optimization based on SI/PI
 - Considering physical limits
 - Conventional Design rules & Assembly processes

This work has been done through 6-sigma process and ideation.

AMSUNG PROPRIETRY

System Design

Location of ISM Bond finger & Test pad

- Edge (fix): ISM bond finger (for wire-bonding & short routing)
- Central/Inner: Test pad

> Two types of ISM

Dependent on DRAM chip-shape

ISM Bond finger configuration

- * Same order w/ DRAM chip pad
 - ➢ Sig : PWR/GND = 2 : 1
 - > DQ side: 83ea & 100um pitch

Test pad design (I)

> Determine Size & Pitch ← Securing No. of test pad, Route ability, Testability

Size, Pitch, & No. of Test pads for 2-channel

- > @ DQ side, ≥ 80ea (\rightarrow ≥ 160ea for 2-channel)
 - DQ side is the limiting area.
- Simple calculation logic
 - Considering maximal # of routing lines b/w adjacent test pad: Round-trip routing

Side-by-Side							
Location of	Side 1	Side 2	Side 3	Side 4	[unit]		
DQ Test pad	1	0	1	0			
PCB Design-rule	W	30	S	30	um		
Test pad Pitch	470				um		
# of rows :	4						
Half row ? (Outer)	0						
Test pad Size :	260				um		
Test pad Area	8.5	Х	8.5		mm x mm		
# of Test pad	164				ea		

Cross-Stacking							
Location of	Side 1	Side 2	Side 3	Side 4	[
DQ Test pad	1	1	0	0	[unit]		
PCB Design-rule	W	30	S	30	um		
Test pad Pitch :	450				um		
# of rows :	4						
Half row ? (Outer)	1						
Test pad Size :	240				um		
Test pad Area	8.2	Х	8.2		mm x mm		
# of Test pad	(160)				ea		

- * Test pad: PSR Open size
 - Minimal size for Testing
 - $300um(@ Conv. MDDR ISM) \rightarrow 200um$
 - By Real test experiment,

200um is OK!

Test and CI for Two Proportions

 Sample
 X
 N
 Sample p

 1
 31360
 32000
 0.980000

 2
 2319
 2375
 0.976421

Estimate for p(1) - p(2): 0.00357895 95% CI for p(1) - p(2): (-0.00271324, 0.00987113) Test for p(1) - p(2) = 0 (vs not = 0): Z = 1.11 **P-Value = 0.265**

ŚAMSUNG

➢ To secure ≥ 200um PSR open @ 260um & 240um Test pad metal size

Conv. PSR open size @ LGA pad = (Metal size) - (2 x PSR tolerance)

= 180um, 160um < Too Small >

- One idea → Widening before the expose of adjacent metal at the maximal offset
 - Test Pad(LGA) of ISM is used for only B/E Testing
 - There is no real connection by Soldering at the test pad \rightarrow No SJR issue.
 - The test pad is locked by EMC in real application (in PiP).

2-channel LP2 ISM Bond finger & Test pad Configuration

Performance Compensation b/w ISM B/F & Test pad

- Signal path to ISM B/F > that to Test pad
- Signal performance @ ISM B/F < that @ Test pad</p>

Loop inductance reduction

> Adding bypass PWR/GND Vias close to ISM B/F

Design Results: Real PCB Artwork Ξ.

SI/PI Co-simulation for Performance Pre-evaluation

Sed simulation schematic [DRAM READ]

> w/ combined models of Signal & PWR/GND

Ref.) Lee, Jongjoo et al, "Split-Ground Effect of Electronic Package on the Input-level of High-speed DRAM," *Proc 53rd ECTC*, 2003, pp. 1440-1444. Jongjoo Lee, "Effects of Package on the Signal Integrity and Power Integrity of DRAM," EDAPS 2003 Workshop.

800Mbps DQ operation @ Side-by-Side configuration

> 800Mbps: IO speed originally targeted

Well operating @ 800Mbps

Negligible difference between through ISM B/F & through Test pad

■ Further evaluation (I) @ LPDDR2 1066Mbps → Operating

> for the worst byte, AP model was changed

Further evaluation (II) @ LP2 1066Mbps \rightarrow Operating (Better)

For the worst byte, w/ changed AP model

■ Further evaluation (III) @ LPDDR3 1600Mbps → Operating

> for the worst byte, w/ changed AP model

Side-by-S	ide	40Ω D/S (default)	48Ω	D/S	60Ω D/S (@	Slow/Slow)
DQ's	ISM B/F						
Wave-forms	Test Pad						
SUM		ISM B/F	Test pad	ISM B/F	Test pad	ISM B/F	Test pad
Valid Wind	low	72.3%	71.5%	69.6%	68.6%	61.9%	61.4%
Overshoo	ot	0.42 V	0.52 V	0.47 V	0.5 V	0.33 V	0.37 V
Skew		124 ps	118 ps	138 ps	132 ps	166 ps	156 ps
	PU						SAMSUNG

Summary of Simulation Results

I/O performance of the 2-channel 2-layer ISMs for LPDDR2/3

- They showed proper operation @ 800Mbps which is the speed originally designed.
 - > In real product of side-by-side configuration, it is actually operating well.
 - Its real thickness is 0.38mm high.

SAMSUNG PROPRIET

With the recent AP & DRAM models, they are also properly operational up to 1066Mbps for LPDDR2 and even 1600Mbps for LPDDR3.

- AP package model: package for PoP
- Signal properties evaluated at the ISM bond finger are similar to those evaluated at the test pad. [High Fidelity]
- Driver strength option/selection is also important.
- On-die de-cap. value of AP (for DRAM I/F) as well as that of DRAM IO PDN also strongly affects to the SI performance in PiP (PoP) structure.

- We successfully designed 2-channel LPDDR2/3 ISMs in 10mm x 10mm size with thin 2 metal-layer substrate.
 - In designing (using conventional design-rules),
 - > Location of ISM B/F & Test pad \leftarrow chip shape, routing scheme
 - > Cal. Logic for matrix/No./size/pitch of test pad \leftarrow max. routable lines
 - > Selection of unavoidable stub length
 - > Test pad PSR opening \leftarrow test method, structural properties
 - Loop inductance matching by PWR/GND design

We used a SI/PI co-simulation method for I/O evaluation

- Simulation results showed the ISMs are operational up to 1066Mbps for LPDDR2 and 1600Mbps for LPDDR3.
- ***** Almost same performance at both the ISM bond finger & the Test pad
- The schemes devised and applied to the design of the ISMs will be efficiently applicable to the design of cost-effective thin high-performance packages such as PoP & interposers.

More speed. Less energy.

Thank you

