

Method of Moment Solution of SVS-EFIE for 2D Transmission Lines of Complex Cross-Sections

A. Menshov and V. Okhmatovski*

University of Manitoba Department of Electrical and Computer Engineering

Winnipeg, CANADA

May 14th, 2012

Integral Equation Approaches for RL extraction

- Volume-IE
- Surface-Volume-Surface IE

Method of Moment for SVS-EFIE

- Surface and volume meshing
- Matrix structure

Numerical results

- Circular conductor: SVS-EFIE vs. Analytic Solution
- Differential pair: SVS-EFIE vs. Volume-IE
- Coaxial cable: SVS-EFIE vs. Volume-IE

Traditional Volume-EFIE

Matrix-vector product:

Surface-Volume-Surface EFIE:

$$i\omega\mu_{0}\int_{\partial S}G_{\sigma}(\vec{\rho},\vec{\rho}')J_{z}(\vec{\rho}')d\vec{\rho}' + \sigma(\omega\mu_{0})^{2}\int_{\partial S}\left[\iint_{S}G_{0}(\vec{\rho},\vec{\rho}')G_{\sigma}(\vec{\rho}',\vec{\rho}'')ds'\right]J_{z}(\vec{\rho}'')d\vec{\rho}'' = V_{p.u.l.}$$

 $\vec{\rho} \in \partial S$.

SVS-EFIE: Operators

SVS-EFIE in operator form:

Surface-to-Surface mapping (global impedance operator)

Surface-to-Volume-to-Surface mapping:

SVS-EFIE in matrix form:

$$(\mathbf{Z}_{\sigma}^{\partial S,\partial S} + \sigma \mathbf{Z}_{0}^{\partial S,S} \cdot \mathbf{Z}_{\sigma}^{S,\partial S}) \cdot \mathbf{I} = \mathbf{V}$$

SVS-EFIE vs. analytic solution

UNIVERSITY of Manitoba

Comparison of new model to the analytic solution for ideal circular cross-section

SVS-EFIE vs V-EFIE: Example 1 UNIVERSITY of MANITOBA $|j_z(\vec{\rho})|$ 0.8, $\frac{|j_z(\vec{\rho})|}{|j_z|_{m\,a\,x}}$ $\overline{|j_z|_{max}}$ 0.6 1 0.4 0.8 0.6 0.2 0.4 0 0.2 0.08 0.06 0 0.06 0.04 0.04 0.02 0.08 0.06 0.02 0.04 0.16 У 0.12 0.14 0.06 0.08 0.1 0.02 0.02 0.04 y х Х

Relative error¹ < 2.7%

Relative error¹ < 1.8%

Simulation Parameters

Transmission line	Single aluminum conductor, hexagonal cross-section, r0=0.025m	2 aluminum conductors of hexagonal cross- section, r0=0.025, centers separated by 0.06m, left – grounded, right – driven 1 V/m
Frequency	60 Hz	60 Hz
Surface mesh	60 linear elements	2×60=120 linear elements
Volumetric mesh	3,697 triangular elements	3,094 triangular elements

¹ – with respect to traditional Volume-EFIE solution

SVS-EFIE vs V-EFIE: Example 2

Simulation Parameters

Cross-section approximation	three hexagons	three 20-sided polygons (icosagons)
Mode	60 Hz, inner conductor is grounded, outer is driven 1 V/m	
Surface mesh	3•60=120 linear elements	3•100=3,000 linear elements
Volumetric mesh	1,660 triangular elements	1,376 triangular elements

¹ – with respect to traditional Volume-EFIE solution

Inductance for coaxial cable

OF MANITOBA

Surface-Volume-Surface EFIE:

- Pros:
 - Degrees of freedom are surface based
 - Degrees of freedom are independent on frequency
 - Rigorous formulation
 - No loss of accuracy from approximations
 - No derivatives on the Green's function
 - Easily combines with layered media Green's function
 - Highly sparse matrices at high frequencies
- Cons:
 - Requires both surface and volume meshing

Questions?