

S-Parameter Extraction of Bond Wires Based on EM Field Simulations of Computed-Tomography-Generated 3D CAD Models

Institute for Parallel and Distributed Systems - University of Stuttgart J. Hillebrand, S. Kieß, M. Wróblewski and S. Simon

Outline

- 1. Introduction: X-ray images and computed tomography
- 2. Method to extract S-parameters from CT-data
- 3. Reconstruction of CAD models using CT-scans
- 4. Reconstruction technique for thin bond-wires and characterization with S-parameters
- 5. Comparison of CT-generated S-parameteres with electrical measurements
- 6. Conclusion

Introduction – X-Ray Solder Joint Inspection

X-ray wavelength < 1 nm

Package VIA Cavity in BGA Ball

/ww.uni-stuttgart.de

Introduction - Computed Tomography - Example

Top view

Bottom view

WLAN printed circuit board

:: 0 Ó :: 0.0 00 00 : 00 00 L Y

0.0 0.0 :00 00 L Y

Using a CT-Scanner for Extracting S-Parameters

Using a CT-Scanner for Extracting S-Parameters

University of Stuttgart

University of Stuttgart

Germany

Using a CT-Scanner for Extracting S-Parameters

- Non-intrusive method to extract S-parameters of planar passive circuits.
- Reconstructed models include variations due to manufacturing.
- Method
 - avoids complex measurements, like de-embedding
 - embedded circuits can be virtually de-embedded by using CAD operations.
 - enables "cheap" multiport measurements
 - number of measurement ports is just limited by storage and computation time.
 - gives visual and electrical information about faults in passive circuits
 - makes device testing easier.

Reconstructing CAD Models Using CT-Scans

- Package consist of different parts, with different sizes, e.g.:
 - transmission lines: width: 50...250µm, height: 17...35µm
 - solder balls: diameter: 400µm, spacing: 500...1000µm
 - bond wires: diameter: 25µm
- Problem for CAD model reconstruction is the resolution of the CT scanner $\Delta s = \frac{w}{N}$, Δs : voxel size, w: scanned space, N: number of pixels (detector)

• Example:

- Detector: image format of NxN=2048x2048 pixels.
- IC-Package: size of approx. 20...40mm

Typically gives a minimal resolution of around 10...20µm III size of bond wires is close to resolution provided by the chosen CT scanner III

Reconstructing CAD Models Using CT-Scans

- Use of different reconstruction techniques for different parts:
 - Edge Detection: transmission lines, planes, vias, solder balls
 - Thinning: thin transmission lines, bond wires

Thinning

Outline

- 1. Introduction: X-ray images and computed tomography
- 2. Method to extract S-parameters from CT-data
- 3. Reconstruction of CAD models using CT-scans
- 4. Reconstruction technique for thin bond-wires and characterization with S-parameters
- 5. Comparison with electrical measurements
- 6. Conclusion

- Because the resolution is close to the diameter of thin bond wires,
 - just information about orientation and location of bond wires is taken from CT scans.
 - Diameter is applied to the model in a different way (X-ray scans or datasheet)

First step:

- Separating voxel volume into slices.
- Applying a thinng algorithm to the separated slices.
- Thinning returns vectors $v_i(p_m)$ with several points p_m , combined to a chain.
 - Each "chain" is aligned along the major axis of the oval formed by the cross-section of a single bond wire.

Second step:

- Assumption: Center point of each cross section is in the center of the detected points in the data vectors $v_i(p_m)$.
- Computation of center points for each cross section by

Third step:

- Assign center points to the corresponding bond wires
 - Start and end points for each bond wire detected by using markers
 - Construction of bounding boxes, aligned to detected start and end points for doing a collision test.

Third step:

- Collision test between each center point \bar{v}_i and bounding box b_i .
- Gives vector $v_{BW,i}$ that consists of all corresponding center points \bar{v}_i of a single bond wire.

 $v_{BW,i} = b_i \cap \bar{v}$

Fourth step:

Creating bond wires by interpolation of all points in vector $v_{BW,i}$

Outline

- 1. Introduction
 - Using a CT-scanner for extracting S-parameters
 - Reconstructing CAD models using CT-scans
- 2. Reconstruction Technique for thin Bond-Wires
- 3. Comparison
 - Comparison of Geometrical Accuracy
 - Comparison of Electrical Accuracy
- 4. Conclusion

Verification of the Geometric Reconstruction

CT image data overlaid with reconstructed bond wires

- Visible errors due to
 - omitted interpolation points (marker 1 and 2)
 - image filtering (marker 3 and 4)

Demonstration - Electrical Measurement of a Bond Wire

Comparison of S-parameters obtained by hybrid simulation and VNA measurement

EM-Simulation of the Bond Wire for S-Parameter Characterization

 S-Parameters of the bond wire for hybrid simulation are obtained by an FDTD simulation

Comparison of the Electrical Measurement and the EM-Simulation of the CT-Based Geometric Model

University of Stuttgart

Germany

Conclusion

- Model extraction algorithm for thin bond wires inside IC packages.
 - Location and orientation of the bond wires is taken from CT scan.
 - Small diameters have to be assigned different either from
 - X-ray scans with higher resolution or
 - by using values from product datasheets.
- Model is suitable for use in an EM field simulator to extract the Sparameters
 - S-Parameters are can be used for further simulations.
 - E.g. hybrid simulation (as presented here)
 - Comupted S-parameters are in good agreement with measured S-Parameters
 - S21 < -0.05 @ 0...6GHz
 - S21 < ±0.15dB @ 6...10GHz

Thank you for your attention!

